UNIT 1: EQUATIONS

Polynomial, Rational, Radical \& Absolute Value

1.1 Review of Factoring Techniques

Factor each of the following completely:

1. Common Factor
a) $-4 x^{3}+16 x^{2}$
b) $2 x^{2}(2 x+1)-6 x(2 x+1)$

$$
=-4 x^{2}(x-4)
$$

$$
\begin{aligned}
& 2 x^{2}(2 x+1)-6 x(2 x+1) \\
& =\begin{aligned}
& \text { or let } a=2 x+1 \\
& 2 x(2 x+1)(x-3) \\
& 2 x^{2} a-6 x a \\
&= 2 x a(x-3) \\
&=2 x(2 x+1)(x-3)
\end{aligned}
\end{aligned}
$$

2. Trinomial Factoring
a) $x^{2}-x-20$
b) $x^{4}+6 x^{2}+9$

$$
=(x-5)(x+4)
$$

$$
\begin{aligned}
& =\left(x^{2}+3\right)\left(x^{2}+3\right) \\
& =\left(x^{2}+3\right)^{2}
\end{aligned}
$$

d) $-8 x^{2}+22 x-12$
c) $6 a^{2}-4 a b-2 b^{2}$

$$
\begin{aligned}
& =-2\left(4 x^{2}-11 x+6\right) \\
& =-2(4 x-3)(x-2)
\end{aligned}
$$

3. Difference of Squares

$$
\text { Recall: } a^{2}-b^{2}=(a-b)(a+b)
$$

a) $25 x^{2}-16 y^{2} z^{6}$
b) $81-x^{4}$

$$
=\left(5 x-4 y z^{3}\right)\left(5 x+4 y z^{3}\right)
$$

$$
=\left(9-x^{2}\right)\left(9+x^{2}\right)
$$

$$
=(3-x)(3+x)\left(9+x^{2}\right)
$$

c) $36(x-2)^{2}-25(x+1)^{2}$
d) $-w^{4}+13 w^{2}-36$
$=[6(x-2)-5(x+1)][6(x-2)+5(x+1)]$
$=-\left(\omega^{4}-13 \omega^{2}+36\right)$
$=(6 x-12-5 x-5)(6 x-12+5 x+5)$
$=-\left(\omega^{2}-9\right)\left(\omega^{2}-4\right)$
$=(x-17)(11 x-7)$

$$
\begin{aligned}
& =-(w)(w+3)(w-2)(w+2) \\
& =-(w-3)(w)
\end{aligned}
$$

4. Factor by Grouping

a) $a x+b x-a y-b y$
b) $4 x^{3}+8 x^{2}-x-2$
$=x(a+b)-y(a+b)$
$=(a+b)(x-y)$

$$
\begin{aligned}
& =4 x^{2}(x+2)-(x+2) \\
& =(x+2)\left(4 x^{2}-1\right) \\
& =(x+2)(2 x-1)(2 x+1)
\end{aligned}
$$

c) $a^{2}-b^{2}+9-6 a$
d) $16 x^{2}-4 y^{2}+12 y-9$

$$
\begin{aligned}
& =16 x^{2}-\left(4 y^{2}-12 y+9\right) \\
& =16 x^{2}-(2 y-3)^{2} \\
& =[4 x-(2 y-3)][4 x+(2 y-3)] \\
& =(4 x-2 y+3) \cdot(4 x+2 y-3)
\end{aligned}
$$

Solving Linear Inequalities

1. Interpret each graphed solution using i) set notation and ii) interval notation.
a)

b)

i) $\{x \in \mathbb{R} \mid x>3\}$
i) $\{x \in \mathbb{R} \mid x \leq-1\}$
ii) $x \in(3,+\infty)$
ii) \qquad
c)

d)

i) $\{x \in \mathbb{R} \mid 1 \leq x \leq 4\}$
ii) $x \in[1,4]$
i) $\{x \in \mathbb{R} \mid x<-2, x>0\}$
ii) $x \in(-\infty,-2) \cup x \in(0,+\infty)$
2. Solve each of the following inequalities and graph on a number line.
a) $2 x-3 \leq 6(x+2)+1$
b) $-3<2 x-1<5$
$2 x-3 \leq 6 x+12+1$
$2 x-3 \leq 6 x+13$
$-4 x \leq 16$
$x \geq-4$

$$
\left.\begin{array}{rl}
+1) \quad-3+1 & <2 x<5+1 \\
\div 2)-2 & <2 x
\end{array}\right)
$$

$$
\begin{aligned}
& \text { c) } 1-\frac{x}{2} \geq \frac{5}{2} \text { or } 1-\frac{x}{2} \leq \frac{1}{2} \\
& \text {-2) } 2-x \geq 5 \text { (union) } 2-x \leq 1 \\
& -x \geq 3 \quad-x \leq-1 \\
& x \leq-3 \quad x \geq 1
\end{aligned}
$$

d) $x-2<0$ and $-(x-2) \geq 2 x$

$$
\begin{aligned}
& x<2 \\
& \text { (intersection) } \\
&-x+2 \geq 2 x \\
& 2 \geq 3 x \\
& \frac{2}{3} \geq x
\end{aligned}
$$

$$
a x^{2}+b x+c=0
$$

3. Solve by factoring.
a) $-2 x^{2}-6 x+20=0$
b) $25=20 t-4 t^{2}$
$4 t^{2}-20 t+25=0$
$-2\left(x^{2}+3 x-10\right)=0$
$(2 t-5)(2 t-5)=0$
$-2(x+5)(x-2)=0$
$\therefore x=-5$ or $x=2$
$\therefore t=\frac{5}{2}$ or $t=\frac{5}{2}$

$$
\begin{gathered}
\text { c) } \frac{x^{2}}{3}-\frac{x}{6}=0 \\
\frac{\frac{2}{6}}{1}\left(\frac{x^{2}}{z_{1}}\right)-\frac{1}{1}\left(\frac{x}{6}\right)=6(0) \\
2 x^{2}-x=0 \\
x(2 x-1)=0 \\
\therefore x=0 \text { or } x=\frac{1}{2}
\end{gathered}
$$

Solving Quadratic Equations Using the Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
A complex number is of the form $a+b i$, where a and b are real numbers and i is the imaginary unit.

In Complex Numbers $i=\sqrt{-1} \boldsymbol{\&} i^{2}=-1$

$$
\text { so } \begin{aligned}
\sqrt{-25} & \left.=\sqrt{25} \sqrt{-1} \quad \text { and } \begin{array}{rl}
\sqrt{-72} & =\sqrt{36} \sqrt{-1} \sqrt{2} \\
& =5 i \\
& =6 i \sqrt{2}
\end{array}\right)=\text {. } \quad \text {. }
\end{aligned}
$$

4. Solve using the quadratic formula, $y \in C$. Answer in simplified radical form if appropriate.
a) $2 y-5=y^{2}$
$y^{2}-2 y+5=0$
$a=1, b=-2, c=5$
$y=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(5)}}{2(1)}$
$y=\frac{2 \pm \sqrt{-16}}{2}$
$y=\frac{2 \pm 4 i}{2}$
$y=\frac{\frac{2}{2}(1 \pm 2 i)}{21}$
$\therefore y=1-2 i$ or $y=1+2 i$
b) $6(t-1)=11-3(t-2)^{2}$ $b(t-1)=11-3(t-2)(t-2)$ $b t-6=11-3\left(t^{2}-4 t+4\right)$
$6 t-b=11-3 t^{2}+12 t-12$
$3 t^{2}-6 t-5=0$
$a=3, b=-6, c=-5$
$t=\frac{6 \pm \sqrt{(-6)^{2}-4(3)(-5)}}{2(3)}$
$t=\frac{b \pm \sqrt{96}}{6}$
$t=\frac{6 \pm 4 \sqrt{6}}{6} \div 2$
$t=\frac{3 \pm 2 \sqrt{6}}{3}$
$\therefore t=\frac{3-2 \sqrt{6}}{3}$ or $t=\frac{3+2 \sqrt{6}}{3}$

1.3 Division of Polynomials

Long Division and the Division Statement

Ex. 1. For each of the following, perform long division and write the division statement, where dividend $=$ divisor \times quotient + remainder or $f(x)=d(x) q(x)+r(x)$.
a) Divide 579 by 8
b) Divide $x^{2}-7 x-10$ by $x-3$

$\therefore 579=8 \times 72+3$

$$
\begin{array}{r}
x-4 \\
x - 3 \longdiv { x ^ { 2 } - 7 x - 1 0 } \\
\frac{-\left(x^{2}-3 x\right)}{4 x-10} \\
\frac{-4 x+12}{-22}
\end{array}
$$

$$
\therefore x^{2}-7 x-10=(x-3)(x-4)-22
$$

Ex. 2. Divide and express each answer using a division statement, where $f(x)=d(x) q(x)+r(x)$. Factor fully if the remainder is 0 .
a) $\left(6 x^{3}-29 x^{2}+43 x-20\right) \div(2 x-5)$
b) $\left(-9 x-3+6 x^{3}-4 x^{2}\right) \div\left(2 x^{2}-3\right)$

$$
\begin{array}{r}
2 x - 5 \longdiv { 6 x ^ { 2 } - 7 x + 4 } \\
\frac{6 x^{3}-29 x^{2}+43 x-20}{-15 x^{2}} \downarrow \\
\frac{-14 x^{2}+43 x}{2}+35 x \\
\frac{8 x-20}{8 x-20}
\end{array}
$$

$$
\therefore 6 x^{3}-4 x^{2}-9 x-3
$$

$$
=\left(2 x^{2}-3\right)(3 x-2)-9
$$

$\begin{aligned} \therefore 6 x^{3}-29 x^{2}+43 x-20 & =(2 x-5)\left(3 x^{2}-7 x+4\right) \\ & =(2 x-5)(3 x-4)(x-1)\end{aligned}$

$$
=(2 x-5)(3 x-4)(x-1)
$$

Ex. 3. The volume, V, in cm^{3}, of a rectangular box is given by $V=x^{3}+7 x^{2}+14 x+8$.
$\because V=l w h$
$\cdot l \cdot w=\frac{v}{h}$
If the height, h, in $c m$, is given by $x+1$, determine expressions for the other dimensions.

$$
\begin{array}{r}
x^{2}+6 x+8 \\
x + 1 \longdiv { x ^ { 3 } + 7 x ^ { 2 } + 1 4 x + 8 } \\
\frac{x^{3}+x^{2}}{6 x^{2}+14 x} \\
\frac{6 x^{2}+6 x}{8 x+8} \\
\frac{8 x+8}{0}
\end{array}
$$

$$
\begin{aligned}
\therefore l \cdot w & =x^{2}+6 x+8 \\
& =(x+4)(x+2)
\end{aligned}
$$

\therefore the other dimensions are $(x+2) \mathrm{cm}$ and $(x+4) \mathrm{cm}$

Ex. 4. For $f(x)=(2 x+1)\left(x^{2}-5 x+1\right)-8$,
a) the linear divisor, $d(x)=2 x+1$
b) the quotient, $q(x)=x^{2}-5 x+1$
c) the remainder, $r(x)=-8$

Long Division and Mixed Rational Form

Ex. 5. For each of the following, perform long division and write in mixed rational form, where $\frac{\text { dividend }}{\text { divisor }}=$ quotient $+\frac{\text { remainder }}{\text { divisor }} \quad$ or $\quad \frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$.
a) $\frac{827}{12}$
b) $\frac{9 x^{2}+6 x-10}{3 x+1}$

$$
\begin{array}{r}
3 x + 1 \longdiv { 9 x ^ { 2 } + 6 x - 1 0 } \\
\frac{9 x^{2}+3 x}{3 x-10} \\
\frac{3 x+1}{-11}
\end{array}
$$

$$
\therefore \frac{827}{12}=68+\frac{11}{12}
$$

$$
\therefore \frac{9 x^{2}+6 x-10}{3 x+1}=(3 x+1)-\frac{11}{3 x+1}
$$

Ex. 6. Divide and express each answer in mixed rational form, where $\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$.

$$
\begin{array}{cc}
\text { a) } \frac{x^{3}}{x-1} & \text { b) } \frac{(3 x+4)(x-3)}{2-x}=\frac{3 x^{2}-5 x-12}{-x+2} \\
x-1 \begin{array}{c}
\frac{x^{2}+x+1}{x^{3}+0 x^{2}+0 x+0} \\
\frac{x^{3}-x^{2}}{x^{2}+0 x} \downarrow \\
\frac{x^{2}-x}{x+0} \\
\frac{x-1}{1}
\end{array} & \begin{array}{c}
-x+2 \sqrt{3 x^{2}-5 x-12} \\
\\
\therefore \frac{3 x^{2}-6 x}{} \downarrow \\
\therefore \frac{x^{3}}{x-1}=\left(x^{2}+x+1\right)+\frac{1}{x-1}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { d) the polynomial function (dividend) } \\
& f(x)=(2 x+1)\left(x^{2}-5 x+1\right)-8 \\
& =2 x^{3}-10 x^{2}+2 x+x^{2}-5 x+1-8 \\
& \therefore f(x)=2 x^{3}-9 x^{2}-3 x-7
\end{aligned}
$$

\qquad

1.4 The Remainder Theorem

Recall Long Division with Polynomials

> When a function $f(x)$ is divided by a divisor $d(x)$, producing a quotient $q(x)$ and a remainder $r(x)$, then $f(x)=d(x) q(x)+r(x)$, where the degree of $r(x)$ is less than the degree of $d(x)$.

1. a. For the function $f(x)=x^{3}+x^{2}-9$, use long division to divide $\left(x^{3}+x^{2}-9\right)$ by $(x-2)$.
$x - 2 \longdiv { x ^ { 3 } + x ^ { 2 } + 3 x + 6 }$
$\frac{x^{3}-2 x^{2}}{3 x^{2}}+0 x$
$\frac{3 x^{2}-6 x}{6 x-9}$
$\frac{6 x-12}{3}$
2. a. For the function $f(x)=x^{3}+3 x^{2}-2 x+1$, use long division to divide

$$
\begin{array}{r}
\left(x^{3}+3 x^{2}-2 x+1\right) \text { by }(x+1) \\
\qquad \begin{array}{r}
x^{2}+2 x-4 \\
x + 1 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 2 x + 1 } \\
\frac{x^{3}+x^{2}}{2 x^{2}-2 x} \\
\frac{2 x^{2}+2 x}{-4 x+1} \\
\frac{-4 x-4}{5}
\end{array}
\end{array}
$$

b. What is the remainder? 3
b. What is the remainder? 5
c. What is the value of $f(2)$?

$$
\begin{aligned}
f(2) & =(2)^{3}+(2)^{2}-9 \\
& =8+4-9 \\
& =3
\end{aligned}
$$

c. What is the value of $f(-1)$?

$$
\begin{aligned}
f(-1) & =(-1)^{3}+3(-1)^{2}-2(-1)+1 \\
& =-1+3+2+1 \\
& =5
\end{aligned}
$$

Based on these examples, complete the following statement:

When $f(x)$ is divided by $(x-2)$, then the remainder $r=f(2)$.
When $f(x)$ is divided by $(x+1)$, then the remainder $r=f(-1)$.
When $f(x)$ is divided by $(x-a)$, then the remainder $r=f(a)$.
When $f(x)$ is divided by $(2 x-1)$, then the remainder $r=f\left(\frac{1}{2}\right)$.
When $f(x)$ is divided by $(5 x+2)$, then the remainder $r=f\left(-\frac{2}{5}\right)$.

Remainder Theorem: i) When a polynomial $f(x)$ is divided by $x-a$, the remainder is $f(a)$.
ii) When a polynomial $f(x)$ is divided by $a x-b$, the remainder is $f\left(\frac{b}{a}\right)$.

Ex. 1. Without using long division, determine the remainder when $2 x^{3}-4 x^{2}+3 x-6$ is divided by $x+2$. Let $f(x)=2 x^{3}-4 x^{2}+3 x-6 ; r=f(-2)$

$$
\begin{aligned}
f(-2) & =2(-2)^{3}-4(-2)^{2}+3(-2)-6 \\
& =-16-16-6-6 \\
& =-44
\end{aligned}
$$

\therefore the remainder is -44
Ex. 2. Find the remainder when $2 x^{3}+3 x^{2}-x-3$ is divided by $3 x-2$.
Use the Remainder Theorem.
Let $f(x)=2 x^{3}+3 x^{2}-x-3 ; r=f\left(\frac{2}{3}\right)$

$$
\begin{aligned}
f\left(\frac{2}{3}\right) & =2\left(\frac{2}{3}\right)^{3}+3\left(\frac{2}{3}\right)^{2}-\frac{2}{3}-3 \\
& =\frac{16}{27}+\frac{4}{3}-\frac{2}{3}-\frac{3}{1} \\
& =\frac{16}{27}+\frac{2}{3}-\frac{3}{1} \\
& =\frac{16}{27}+\frac{18}{27}-\frac{81}{27}
\end{aligned}
$$

$$
=\frac{16}{27}+\frac{4}{3}-\frac{2}{3}-\frac{3}{1} \quad \rightarrow=-\frac{47}{27}
$$

$$
\therefore \text { the remainder is }
$$

$$
-\frac{47}{27}
$$

Ex. 3. When $x^{3}-k x^{2}+17 x+6$ is divided by $x-3$, the remainder is 12 . Find the value of k.
Let $f(x)=x^{3}-k x^{2}+17 x+6 ; f(3)=12$

$$
\begin{aligned}
(3)^{3}-k(3)^{2}+17(3)+6 & =12 \\
27-9 k+51+6 & =12 \\
-9 k+84 & =12 \\
-9 k & =-72 \\
\therefore k & =8
\end{aligned}
$$

Ex. 4. When the polynomial $f(x)=3 x^{3}+c x^{2}+d x-7$ is divided by $x-2$, the remainder is -3 . When $f(x)$ is divided by $x+1$, the remainder is -18 . What are the values of c and d ?

$$
\begin{aligned}
(1) & f(2)=-3 \\
3(2)^{3}+c(2)^{2}+d(2)-7 & =-3 \\
24+4 c+2 d-7 & =-3 \\
4 c+2 d & =-20 \\
\div 2) 2 c+d & =-10
\end{aligned}
$$

(2)

$$
f(-1)=-18
$$

$$
\begin{aligned}
3(-1)^{2}+c(-1)^{2}+d(-1)-7 & =-18 \\
-3+c-d-7 & =-18 \\
c-d & =-8
\end{aligned}
$$

(3) Solve

$$
\begin{aligned}
2 c+d & =-10 \\
c-d & =-8 \\
\text { Add: } 3 c & =-18 \\
c & =-6
\end{aligned}
$$

Sub $c=-6$ into (2):

$$
\begin{aligned}
(-6)-d & =-8 \\
-6+8 & =d \\
d & =2
\end{aligned}
$$

HW. Exercise 1.4
\qquad

THE FACTOR THEOREM: $(x-a)$ is a factor of $f(x)$ if and only if $f(a)=0$
ie. If $(x-a)$ is a factor of $f(x)$ then $f(a)=0$
If $f(a)=0$ then ${ }^{\text {or }}(x-a)$ is a factor of $f(x)$
Note: If the leading coefficient of the polynomial is 1 then a is a factor of the constant term.

Ex. 1. a) If $(x-2)$ is a factor of $f(x)$, then $f(2)=0$
b) If $f(-1)=0$, then a factor of $f(x)$ is $x+1$

Ex. 2. Is $(x+3)$ a factor of $x^{3}+5 x^{2}+2 x-9$?

$$
\begin{aligned}
\text { Let } f(x) & =x^{3}+5 x^{2}+2 x-9 \\
f(-3) & =(-3)^{3}+5(-3)^{2}+2(-3)-9 \\
& =-27+45-6-9 \\
& =3
\end{aligned}
$$

$\because f(-3) \neq 0$, the remainder is not 0
$\therefore x+3$ is not a factor.

Ex. 3. Determine the values) of k so that $(x-4)$ is a factor of $x^{3}-k^{2} x^{2}-16 x+4 k$.

$$
\text { Let } f(x)=x^{3}-k^{2} x^{2}-16 x+4 k ;
$$

$\because x-4$ is a factor

$$
\therefore f(4)=0
$$

$$
\begin{gathered}
f(4)=0 \\
(4)^{3}-k^{2}(4)^{2}-16(4)+4 k=0 \\
-16 k^{2}+4 k=0 \\
-4 k(k-4)=0 \\
\therefore k=0 \quad \text { or } k=4
\end{gathered}
$$

Ex. 4. Completely factor the following polynomials.

$$
\begin{aligned}
\text { a) } & x^{3}+3 x^{2}-13 x-15 \\
= & (x+1)\left(x^{2}+2 x-15\right) \\
= & (x+1)(x+5)(x-3)
\end{aligned}
$$

Let $f(x)=x^{3}+3 x^{2}-13 x-15$

$$
\text { b) } \begin{aligned}
& x^{3}-3 x^{2}-4 x+12 \\
= & x^{2}(x-3)-4(x-3) \\
= & (x-3)\left(x^{2}-4\right) \\
= & (x-3)(x-2)(x+2)
\end{aligned}
$$

c) $x^{3}-27$
$=(x-3)\left(x^{2}+3 x+9\right)$

Let $f(x)=x^{3}-27$
Test values: $\pm 1, \pm 3, \pm 9, \pm 27$

$x - 3 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + 3 x - 9 x - 2 7 }$
$\frac{x^{3}-3 x^{2}}{3 x^{2}}+0 x$
$\because f(3)=0$
$\therefore x-3$ is a
$\frac{3 x^{2}-9 x}{-9 x-27}$
$-9 x-27$
0

Factoring the Sum and Difference of Cubes:

$$
\begin{gathered}
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
\& \\
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{gathered}
$$

Ex. 5. Factor the following using the formulas for factoring the sum and difference of cubes.

$$
\text { or } \begin{aligned}
\text { a) } x^{x^{3}-27} & =(x)^{3}-(3)^{3} \\
& =[(x)-(3)]\left[(x)^{2}+(x)(3)+(3)^{2}\right] \\
\rightarrow & =(x-3)\left(x^{2}+3 x+9\right)
\end{aligned}
$$

b) $16 x^{3}+250 y^{3}=2\left(8 x^{3}+125 y^{3}\right)$

$$
\begin{aligned}
& =2\left[(2 x)^{3}+(5 y)^{3}\right] \\
& =2[(2 x)+(5 y)]\left[(2 x)^{2}-(2 x)(5 y)+(5 y)^{2}\right] \\
& =2(2 x+5 y)\left(4 x^{2}-10 x y+25 y^{2}\right)
\end{aligned}
$$

c) $x^{6}-64=\left(x^{3}-8\right)\left(x^{3}+8\right)$ *always difference of squares first

$$
=(x-2)\left(x^{2}+2 x+4\right)(x+2)\left(x^{2}-2 x+4\right)
$$

\qquad 1.6 The Extended Factor Theorem

Factoring the Sum and Difference of Cubes

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

Ex. 1. Completely factor each of the following.

$$
\text { a) } \begin{aligned}
& 125 x^{4}-216 x y^{6} \\
= & x\left(125 x^{3}-216 y^{6}\right) \\
= & x\left[(5 x)^{3}-\left(6 y^{2}\right)^{3}\right]^{2} \\
= & x\left(5 x-6 y^{2}\right)\left(25 x^{2}+30 x y^{2}+36 y^{4}\right)
\end{aligned}
$$

* Recall:

$$
\text { b) } \begin{aligned}
& (2 x+1)^{3}+(x-4)^{3} \\
= & {[(2 x+1)+(x-4)]\left[(2 x+1)^{2}-(2 x+1)(x-4)+(x-4)^{2}\right] \quad(x+y)^{2}=(x+y)(x+y) } \\
= & (2 x+1+x-4)[(2 x+1)(2 x+1)-(2 x+1)(x-4)+(x-4)(x-4)] \\
= & (3 x-3)\left[\left(4 x^{2}+4 x-1\right)-\left(2 x^{2}-7 x-4\right)+\left(x^{2}-8 x+16\right)\right] \\
= & 3(x-1)\left(3 x^{2}+3 x+21\right) \\
= & 9(x-1)\left(x^{2}+x+7\right)
\end{aligned}
$$

c) $\frac{1}{27} x^{9}-64$

$$
\begin{aligned}
& =\left(\frac{1}{3} x^{3}\right)^{3}-(4)^{3} \\
& =\left[\frac{1}{3} x^{3}-4\right]\left[\left(\frac{1}{3} x^{3}\right)^{2}+\left(\frac{1}{3} x^{3}\right)(4)+(4)^{2}\right] \\
& =\left(\frac{1}{3} x^{3}-4\right)\left(\frac{1}{9} x^{6}+\frac{4}{3} x^{3}+16\right)
\end{aligned}
$$

d) $8 x^{6}+15 x^{3}-2=\left(x^{3}+2\right)\left(8 x^{3}-1\right)$

$$
\begin{aligned}
& =\left(x^{2}+2\right)(8 x-1) \\
& =\left(x^{3}+2\right)(2 x-1)\left(4 x^{2}+2 x+1\right)
\end{aligned}
$$

THE EXTENDED FACTOR THEOREM:
$(a x-b)$ is a factor of $f(x)$ if and only if $f\left(\frac{b}{a}\right)=0$
ie. If $(a x-b)$ is a factor of $f(x)$ then $f\left(\frac{b}{a}\right)=0$
or
If $f\left(\frac{b}{a}\right)=0$ then $(a x-b)$ is a factor of $f(x)$

- b is a factor of the constant term of $f(x)$
- a is a factor of the leading coefficient of $f(x)$

Ex. 2. Write the binomial factor that corresponds to the polynomial $f(x)$ if:
a) $f\left(\frac{1}{2}\right)=0$
b) $f\left(-\frac{2}{5}\right)=0$
$\therefore 2 x-1$ is a factor
$\therefore 5 x+2$ is a factor

Ex. 3. If $2 x^{3}-k x^{2}-4 x+6$ is divisible by $2 x-3$, what is the value of k.

$$
\begin{aligned}
& \text { Let } f(x)=2 x^{3}-K x^{2}-4 x+6 ; f\left(\frac{3}{2}\right)=0 \\
& \begin{aligned}
2\left(\frac{3}{2}\right)^{3}-k\left(\frac{3}{2}\right)^{2}-4\left(\frac{3}{2}\right)+6 & =0 \\
\frac{27}{4}-\frac{9}{4} k-6+6 & =0 \\
\frac{27}{4} & =\frac{9}{4} k \\
\therefore k & =3
\end{aligned}
\end{aligned}
$$

Ex. 4. Completely factor each of the following.

$$
\text { a) } \begin{aligned}
& 2 x^{3}-5 x^{2}-4 x+3 \\
= & (2 x-1)\left(x^{2}-2 x-3\right) \\
= & (2 x-1)(x-3)(x+1)
\end{aligned}
$$

Let $f(x)=2 x^{3}-5 x^{2}-4 x+3$
Test Values: $\pm 1, \pm 3, \pm \frac{3}{2}, \pm \frac{1}{2}$

x	$f(x)$
1	$\neq 0$
-1	$\neq 0$
3	$\neq 0$
-3	$\neq 0$
$\frac{1}{2}$	0

$\because f\left(\frac{1}{2}\right)=0$
$\therefore 2 x-1159$ factor

$$
\text { b) } \begin{aligned}
& 8 x^{3}+12 x^{2}+6 x+1 \\
= & (2 x+1)\left(4 x^{2}+4 x+1\right) \\
= & (2 x+1)(2 x+1)(2 x+1) \\
= & (2 x+1)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } 9 x^{4}+6 x^{3}+4 x^{2}-5 x-2 \\
& =(3 x+1)\left(3 x^{3}+x^{2}+x-2\right) \\
& =(3 x+1)(3 x-2)\left(x^{2}+x+1\right)
\end{aligned}
$$

Let $f(x)=8 x^{3}+12 x^{2}+6 x+1$
Test values: $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$

$$
\begin{array}{r}
\frac{4 x^{2}+4 x+1}{8 x+1)} \begin{array}{r}
\frac{8 x^{3}+12 x^{2}+6 x+1}{8 x^{3}+4 x^{2}} \\
\frac{8 x^{2}+6 x}{2 x+1} \\
\frac{2 x+1}{0}
\end{array}
\end{array}
$$

Let $f(x)=9 x^{4}+6 x^{3}+4 x^{2}-5 x-2$
Test Values: $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{1}{9}, \pm \frac{2}{9}$

x	$f(x)$
$-\frac{1}{3}$	0

$\because f\left(-\frac{1}{3}\right)=0$
$\therefore 3 x+1$ is a
\therefore factor

$$
\begin{array}{r}
3 x^{3}+x^{2}+x-2 \\
3 x + 1 \longdiv { 9 x ^ { 4 } + 6 x ^ { 3 } + 4 x ^ { 2 } - 5 x - 2 } \\
\frac{9 x^{4}+3 x^{3}}{3 x^{3}+4 x^{2}} \\
\frac{3 x^{3}+x^{2}}{3 x^{2}-5 x} \\
\frac{3 x^{2}+x}{-6 x-2} \\
\frac{-6 x-2}{0}
\end{array}
$$

Let $g(x)=3 x^{3}+x^{2}+x-2$
Test Values: $\pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$

$$
\begin{array}{c|c}
x & g(x) \\
\hline-\frac{1}{3} & \neq 0 \\
\frac{2}{3} & 0
\end{array}
$$

