Date:____

<u>UNIT 1</u>: <u>EQUATIONS</u> Polynomial, Rational, Radical & Absolute Value

<u>1.1 Review of Factoring Techniques</u>

Factor each of the following completely:

- 1. Common Factor
 - **a**) $-4x^3 + 16x^2$ **b**) $2x^2(2x+1) 6x(2x+1)$
- 2. Trinomial Factoring
 - **a)** $x^2 x 20$ **b)** $x^4 + 6x^2 + 9$
 - c) $6a^2 4ab 2b^2$ d) $-8x^2 + 22x 12$
- **3.** Difference of Squares **a**) $25x^2 - 16y^2z^6$ **b**) $81 - x^4$

c)
$$36(x-2)^2 - 25(x+1)^2$$

d) $-w^4 + 13w^2 - 36$

4. Factor by Grouping **a**) ax+bx-ay-by

b) $4x^3 + 8x^2 - x - 2$

c) $a^2 - b^2 + 9 - 6a$ d) $16x^2 - 4y^2 + 12y - 9$

HW. Exercise 1.1

MHF4UI Unit 1: Day 2 Date:_____

Solving Linear Inequalities

1. Interpret each graphed solution using i) set notation and ii) interval notation.

- 2. Solve each of the following inequalities and graph the *simplified* solution on a number line.
 - **a**) $2x 3 \le 6(x+2) + 1$ **b**) -3 < 2x 1 < 5

Solving Quadratic Equations by Factoring Recall: A quadratic equation is of the form

3. Solve by factoring.

a) $-2x^2 - 6x + 20 = 0$ **b**) $25 = 20t - 4t^2$ **c**) $\frac{x^2}{3} - \frac{x}{6} = 0$

Solving Quadratic Equations Using the Quadratic Formula

If $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. A complex number is of the form a + bi, where a and b

A complex number is of the form a + bi, where a and b are real numbers and i is the imaginary unit.

 $ax^2 + bx + c = 0$.

In Complex Numbers
$$i = \sqrt{-1} \& i^2 = -1$$

so $\sqrt{-25} = and \sqrt{-72} = -1$

4. Solve using the quadratic formula, $y \in C$. Answer in simplified radical form if appropriate. **a)** $2y-5 = y^2$ **b)** $6(t-1) = 11-3(t-2)^2$

1.3 Division of Polynomials

Long Division and the Division Statement

- Ex. 1. For each of the following, perform long division and write the division statement, where dividend = divisor × quotient + remainder or f(x) = d(x)q(x) + r(x).
 - **b)** Divide $x^2 7x 10$ by x 3**a**) Divide 579 by 8

- **Ex. 2.** Divide and express each answer using a **division statement**, where f(x) = d(x)q(x) + r(x). Factor fully if the remainder is 0.
 - **a)** $(6x^3 29x^2 + 43x 20) \div (2x 5)$ **b)** $(-9x 3 + 6x^3 4x^2) \div (2x^2 3)$

Ex. 3. The volume, V, in cm^3 , of a rectangular box is given by $V = x^3 + 7x^2 + 14x + 8$. If the height, h, in cm, is given by x+1, determine expressions for the other dimensions. **Ex. 4.** For $f(x) = (2x+1)(x^2-5x+1)-8$,

a) the linear divisor, d(x) =

b) the quotient, q(x) =

c) the remainder, r(x) = d) the polynomial function (dividend)

$$f(x) =$$

Long Division and Mixed Rational Form

Ex. 5. For each of the following, perform long division and write in **mixed rational form**, where $\frac{dividend}{dividend} = auotient + \frac{remainder}{remainder} \qquad \text{or} \qquad \frac{f(x)}{dividend} = a(x) + \frac{r(x)}{dividend}$

or	$\frac{f(x)}{f(x)} = a(x)$	r $r(x)$
01	$\frac{d}{d(x)} = q(x)$	d(x) $d(x)$.
	b) $\frac{6x^2 - 3x^2}{3x^2}$	$\frac{7x-10}{x+1}$
	or	or $\frac{f(x)}{d(x)} = q($ b) $\frac{6x^2 - 1}{3x}$

Ex. 6. Divide and express each answer in **mixed rational form**, where $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$.

a)
$$\frac{x^3}{x-1}$$
 b) $\frac{(3x+4)(x-3)}{2-x}$

Recall Long Division with Polynomials

When a function f(x) is divided by a divisor d(x), producing a quotient q(x)and a remainder r(x), then f(x) = d(x)q(x) + r(x), where the degree of r(x)is less than the degree of d(x).

- **1. a.** For the function $f(x) = x^3 + x^2 9$, use long division to divide $(x^3 + x^2 - 9)$ by (x - 2).
- 2. a. For the function $f(x) = x^3 + 3x^2 2x + 1$, use long division to divide $(x^3 + 3x^2 - 2x + 1)$ by (x + 1).

b. What is the remainder?

c. What is the value of f(2)?

b. What is the remainder?

c. What is the value of f(-1)?

Based on these examples, complete the following statement:

When f(x) is divided by (x-2), then the remainder r = f(). When f(x) is divided by (x+1), then the remainder r = f(). When f(x) is divided by (x-a), then the remainder r = f(). When f(x) is divided by (2x-1), then the remainder r = f(). When f(x) is divided by (5x+2), then the remainder r = f().

Remainder Theorem: i) When a polynomial f(x) is divided by x-a, the remainder is f(a).

ii) When a polynomial f(x) is divided by ax - b, the remainder

is
$$f\left(\frac{b}{a}\right)$$

Ex. 1. Without using long division, determine the remainder when $2x^3 - 4x^2 + 3x - 6$ is divided by x + 2.

Ex. 2. Find the remainder when $2x^3 + 3x^2 - x - 3$ is divided by 3x - 2. Use the *Remainder Theorem*.

Ex. 3. When $x^3 - kx^2 + 17x + 6$ is divided by x - 3, the remainder is 12. Find the value of k.

Ex. 4. When the polynomial $f(x) = 3x^3 + cx^2 + dx - 7$ is divided by x - 2, the remainder is -3. When f(x) is divided by x + 1, the remainder is -18. What are the values of c and d? **THE FACTOR THEOREM:** (x-a) is a factor of f(x) if and only if f(a) = 0ie. If (x-a) is a factor of f(x) then or If f(a) = 0 then Note: If the leading coefficient of the polynomial is 1 then a is a factor of the constant term.

Ex. 1. a) If (x-2) is a factor of f(x), then f(2) =

b) If f(-1) = 0, then a factor of f(x) is

Ex. 2. Is (x+3) a factor of $x^3 + 5x^2 + 2x - 9$?

Ex. 3. Determine the value(s) of k so that (x-4) is a factor of $x^3 - k^2 x^2 - 16x + 4k$.

Ex. 4. Completely factor the following polynomials. **a)** $x^3 + 3x^2 - 13x - 15$

b)
$$x^3 - 3x^2 - 4x + 12$$

c) $x^3 - 27$

Factoring the Sum and Difference of Cubes:

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

&
 $a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$

Ex. 5. Factor the following using the formulas for factoring the sum and difference of cubes. **a)** $x^3 - 27$

b) $16x^3 + 250y^3$

c) $x^6 - 64$

<u>1.6 The Extended Factor Theorem</u>

Factoring the Sum and Difference of Cubes $a^3 + b^3 =$ $a^3 - b^3 =$

Ex. 1. Completely factor each of the following. **a)** $125x^4 - 216xy^6$

b)
$$(2x+1)^3 + (x-4)^3$$

c)
$$\frac{1}{27}x^9 - 64$$

d)
$$8x^6 + 15x^3 - 2$$

THE EXTENDED FACTOR THEOREM:

$$(ax - b)$$
 is a factor of $f(x)$ if and only if $f\left(\frac{b}{a}\right) = 0$
ie. If $(ax - b)$ is a factor of $f(x)$ then $f\left(\frac{b}{a}\right) = 0$
or
If $f\left(\frac{b}{a}\right) = 0$ then $(ax - b)$ is a factor of $f(x)$
• b is a factor of the constant term of $f(x)$
• a is a factor of the leading coefficient of $f(x)$

Ex. 2. Write the binomial factor that corresponds to the polynomial f(x) if: **a)** $f\left(\frac{1}{2}\right) = 0$ **b)** $f\left(-\frac{2}{5}\right) = 0$

Ex. 3. If $2x^3 - kx^2 - 4x + 6$ is divisible by 2x - 3, what is the value of k.

Ex. 4. Completely factor each of the following. **a)** $2x^3 - 5x^2 - 4x + 3$ **b**) $8x^3 + 12x^2 + 6x + 1$

c)
$$9x^4 + 6x^3 + 4x^2 - 5x - 2$$

HW. Exercise 1.6 Unit 1 Part I Test covers Days 1 to 6 HW. Part I Review 1.1 to 1.6