\qquad

UNIT 1: EQUATIONS

Polynomial, Rational, Radical \& Absolute Value

1.1 Review of Factoring Techniques

Factor each of the following completely:

1. Common Factor
a) $-4 x^{3}+16 x^{2}$
b) $2 x^{2}(2 x+1)-6 x(2 x+1)$
2. Trinomial Factoring
a) $x^{2}-x-20$
b) $x^{4}+6 x^{2}+9$
c) $6 a^{2}-4 a b-2 b^{2}$
d) $-8 x^{2}+22 x-12$
3. Difference of Squares
a) $25 x^{2}-16 y^{2} z^{6}$
b) $81-x^{4}$
c) $36(x-2)^{2}-25(x+1)^{2}$
d) $-w^{4}+13 w^{2}-36$

Recall: $a^{2}-b^{2}=(a-b)(a+b)$
4. Factor by Grouping
a) $a x+b x-a y-b y$
b) $4 x^{3}+8 x^{2}-x-2$
c) $a^{2}-b^{2}+9-6 a$
d) $16 x^{2}-4 y^{2}+12 y-9$

Solving Linear Inequalities

1. Interpret each graphed solution using i) set notation and ii) interval notation.
a)

b)

i)
\qquad i) \qquad
ii) \qquad
ii) \qquad
c)

d)

i) \qquad i) \qquad
ii) \qquad
ii) \qquad
2. Solve each of the following inequalities and graph the simplified solution on a number line.
a) $2 x-3 \leq 6(x+2)+1$
b) $-3<2 x-1<5$
\qquad
\qquad
c) $1-\frac{x}{2} \geq \frac{5}{2}$ or $\quad 1-\frac{x}{4}>\frac{1}{2}$
d) $x-2<0$ and $-(x-2) \geq 2 x$
\qquad
\qquad

$$
a x^{2}+b x+c=0
$$

3. Solve by factoring.
a) $-2 x^{2}-6 x+20=0$
b) $25=20 t-4 t^{2}$
c) $\frac{x^{2}}{3}-\frac{x}{6}=0$

Solving Quadratic Equations Using the Quadratic Formula

If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
A complex number is of the form $a+b i$, where a and b are real numbers and i is the imaginary unit.

In Complex Numbers $i=\sqrt{-1} \boldsymbol{\&} i^{2}=-1$
so $\sqrt{-25}=\quad$ and $\sqrt{-72}=$
4. Solve using the quadratic formula, $y \in C$. Answer in simplified radical form if appropriate.
a) $2 y-5=y^{2}$
b) $6(t-1)=11-3(t-2)^{2}$

1.3 Division of Polynomials

Long Division and the Division Statement

Ex. 1. For each of the following, perform long division and write the division statement, where dividend $=$ divisor \times quotient + remainder or $f(x)=d(x) q(x)+r(x)$.
a) Divide 579 by 8
b) Divide $x^{2}-7 x-10$ by $x-3$

Ex. 2. Divide and express each answer using a division statement, where $f(x)=d(x) q(x)+r(x)$. Factor fully if the remainder is 0 .
a) $\left(6 x^{3}-29 x^{2}+43 x-20\right) \div(2 x-5)$
b) $\left(-9 x-3+6 x^{3}-4 x^{2}\right) \div\left(2 x^{2}-3\right)$

Ex. 3. The volume, V, in cm^{3}, of a rectangular box is given by $V=x^{3}+7 x^{2}+14 x+8$.
If the height, h, in $c m$, is given by $x+1$, determine expressions for the other dimensions.

Ex. 4. For $f(x)=(2 x+1)\left(x^{2}-5 x+1\right)-8$,
a) the linear divisor, $d(x)=$
b) the quotient, $q(x)=$
c) the remainder, $r(x)=$
d) the polynomial function (dividend)
$f(x)=$

Long Division and Mixed Rational Form

Ex. 5. For each of the following, perform long division and write in mixed rational form, where

$$
\begin{array}{lll}
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }+\frac{\text { remainder }}{\text { divisor }} & \text { or } & \frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)} \\
\begin{array}{ll}
\text { a) } \frac{827}{12} & \text { b) } \frac{6 x^{2}-7 x-10}{3 x+1}
\end{array}
\end{array}
$$

Ex. 6. Divide and express each answer in mixed rational form, where $\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$.
a) $\frac{x^{3}}{x-1}$
b) $\frac{(3 x+4)(x-3)}{2-x}$
\qquad

Recall Long Division with Polynomials

When a function $f(x)$ is divided by a divisor $d(x)$, producing a quotient $q(x)$ and a remainder $r(x)$, then $f(x)=d(x) q(x)+r(x)$, where the degree of $r(x)$ is less than the degree of $d(x)$.

1. a. For the function $f(x)=x^{3}+x^{2}-9$, use long division to divide $\left(x^{3}+x^{2}-9\right)$ by $(x-2)$.
2. a. For the function $f(x)=x^{3}+3 x^{2}-2 x+1$, use long division to divide $\left(x^{3}+3 x^{2}-2 x+1\right)$ by $(x+1)$.
b. What is the remainder?
b. What is the remainder?
c. What is the value of $f(2)$?
c. What is the value of $f(-1)$?

Based on these examples, complete the following statement:

When $f(x)$ is divided by $(x-2)$, then the remainder $r=f()$.
When $f(x)$ is divided by $(x+1)$, then the remainder $r=f()$.
When $f(x)$ is divided by $(x-a)$, then the remainder $r=f()$.
When $f(x)$ is divided by $(2 x-1)$, then the remainder $r=f(\quad)$.
When $f(x)$ is divided by $(5 x+2)$, then the remainder $r=f(\quad)$.

Remainder Theorem: i) When a polynomial $f(x)$ is divided by $x-a$, the remainder is $f(a)$.
ii) When a polynomial $f(x)$ is divided by $a x-b$, the remainder is $f\left(\frac{b}{a}\right)$.

Ex. 1. Without using long division, determine the remainder when $2 x^{3}-4 x^{2}+3 x-6$ is divided by $x+2$.

Ex. 2. Find the remainder when $2 x^{3}+3 x^{2}-x-3$ is divided by $3 x-2$. Use the Remainder Theorem.

Ex. 3. When $x^{3}-k x^{2}+17 x+6$ is divided by $x-3$, the remainder is 12 . Find the value of k.

Ex. 4. When the polynomial $f(x)=3 x^{3}+c x^{2}+d x-7$ is divided by $x-2$, the remainder is -3 . When $f(x)$ is divided by $x+1$, the remainder is -18 . What are the values of c and d ?

HW. Exercise 1.4

THE FACTOR THEOREM: $(x-a)$ is a factor of $f(x)$ if and only if $f(a)=0$
ie. If $(x-a)$ is a factor of $f(x)$ then
or
If $f(a)=0$ then
Note: If the leading coefficient of the polynomial is 1 then a is a factor of the constant term.

Ex. 1. a) If $(x-2)$ is a factor of $f(x)$, then $f(2)=$
b) If $f(-1)=0$, then a factor of $f(x)$ is

Ex. 2. Is $(x+3)$ a factor of $x^{3}+5 x^{2}+2 x-9$?

Ex. 3. Determine the value(s) of k so that $(x-4)$ is a factor of $x^{3}-k^{2} x^{2}-16 x+4 k$.

Ex. 4. Completely factor the following polynomials.
a) $x^{3}+3 x^{2}-13 x-15$
b) $x^{3}-3 x^{2}-4 x+12$
c) $x^{3}-27$

Factoring the Sum and Difference of Cubes: $\quad \begin{gathered}a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\ \boldsymbol{\&} \\ a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\end{gathered}$
Ex. 5. Factor the following using the formulas for factoring the sum and difference of cubes.
a) $x^{3}-27$
b) $16 x^{3}+250 y^{3}$
c) $x^{6}-64$

MHF4UI Unit 1: Day 6
Date: \qquad

Factoring the Sum and Difference of Cubes
$a^{3}+b^{3}=$
$a^{3}-b^{3}=$

Ex. 1. Completely factor each of the following.
a) $125 x^{4}-216 x y^{6}$
b) $(2 x+1)^{3}+(x-4)^{3}$
c) $\frac{1}{27} x^{9}-64$
d) $8 x^{6}+15 x^{3}-2$

THE EXTENDED FACTOR THEOREM:

$(a x-b)$ is a factor of $f(x)$ if and only if $f\left(\frac{b}{a}\right)=0$
ie. If $(a x-b)$ is a factor of $f(x)$ then $f\left(\frac{b}{a}\right)=0$
If $f\left(\frac{b}{a}\right)=0$ then $(a x-b)$ is a factor of $f(x)$

- b is a factor of the constant term of $f(x)$
- a is a factor of the leading coefficient of $f(x)$

Ex. 2. Write the binomial factor that corresponds to the polynomial $f(x)$ if:
a) $f\left(\frac{1}{2}\right)=0$
b) $f\left(-\frac{2}{5}\right)=0$

Ex. 3. If $2 x^{3}-k x^{2}-4 x+6$ is divisible by $2 x-3$, what is the value of k.

Ex. 4. Completely factor each of the following.
a) $2 x^{3}-5 x^{2}-4 x+3$
b) $8 x^{3}+12 x^{2}+6 x+1$
c) $9 x^{4}+6 x^{3}+4 x^{2}-5 x-2$

HW. Exercise 1.6
Unit 1 Part I Test covers Days 1 to 6 HW. Part I Review 1.1 to $\mathbf{1 . 6}$

