Note: A polynomial equation of the n^{th} degree has n roots.

Ex. 1. Solve for x in each of the following, $x \in C$. a) $27x^3 + 8 = 0$

b) $6x^3 - 13x^2 + x + 2 = 0$

c)
$$x^3 - 7x^2 + 8 = 0$$

d)
$$3x^3 + x^2 + 24x + 8 = 0$$

e) $-4x^4 - 18x^3 + 10x^2 = 0$

$$x^4 - 24x^2 = 25$$
 g) $(x^2 - 5x - 5)(x^2 - 5x + 3) = 9$

f)

1. Determine the roots of the cubic equation $6x^3 - 19x^2 + 9x + 10 = 0$.

2. Write an appropriate equation in expanded form with integral coefficients having the given roots.

a)
$$-3 \text{ and } \frac{2}{3}$$
 b) $2-3i \text{ and } 2+3i$

c) 0, 0,
$$1-2\sqrt{5}$$
 and $1+2\sqrt{5}$
d) 2, $-\frac{1}{2}$ and $\frac{5}{3}$

Warmup

1. Solve, $x \in C$. **a)** $x^2 - 18 = 0$ **b)** $4x^2 + 25 = 0$ **c)** $(x+3)^2 = 16$ **d)** $(x-6)^2 + 12 = 0$

2. Square each of the following: a) $5\sqrt{x}$ b) $3\sqrt{x+1}$ c) $\sqrt{x-2}-3$

- Solving Radical Equations
- 1. Isolate the radical on one side of the equation.
- 2. Square both sides of the equation.
- 3. Repeat 1. and 2. until no radicals remain.
- 4. Solve and check answers in the original equation to identify and reject any extraneous roots.

d) $2-5\sqrt{x+1}$

3. Solve.

a) $4\sqrt{2x+7} - 5 = 7$

b)
$$x + \sqrt{x - 2} = 4$$

c)
$$\sqrt{4x+5} - \sqrt{2x-6} = 3$$

1.10 Solving Rational Equations

1. Solve, $x \in C$. Include restrictions on the variable. *Hint:* Multiply both sides of the equation by the lowest common denominator (*LCD*).

a)
$$\frac{2}{3} + \frac{1}{2x} = \frac{2-x}{x}$$
 b) $\frac{4}{x+1} = \frac{x+1}{4}$

c)
$$\frac{4}{x-1} - \frac{3}{x+2} = 2$$
 d) $\frac{x^2 - 2x + 1}{x^2 - 1} - \frac{3x - 1}{x+2} = 0$

2. Determine all real roots of the following equation. Include restrictions on the variable.

a)
$$x^{-2}(8x^{-3}+1) = 0$$

b) $x^2 - 2x = 2 - \frac{1}{x^2 - 2x}$

$$\mathbf{c}) \quad \sqrt{x-7} + \sqrt{x} = \frac{21}{\sqrt{x-7}}$$

1.11 Absolute Value Equations and Inequalities

 Date:
 1.11 Absolute Value

The *absolute value* of a number is defined as the distance between the number and the origin.

b)
$$2|5|-|-10|$$

The Absolute Value of $x, x \in R$, is $|x| = \begin{cases} -x, & \text{if } x < 0. \\ +x, & \text{if } x \ge 0. \end{cases}$

Ex. 2. Graph each of the following on the number line, for $x \in R$. Rewrite each statement without the absolute value bars.

a) |x| > 4

b) $|x| \le 2$

For a given function f(x),

$$|f(x)| = \begin{cases} -f(x), & \text{if } f(x) < 0. \\ +f(x), & \text{if } f(x) \ge 0. \end{cases}$$

Ex. 3. Solve for
$$x, x \in R$$
.
a) $|x-2| = 3$

b)
$$|x-3| = 2x$$

c) |3x-1| < 5

d) $|x-2| \ge 2x$

HW. Exercise 1.11

MHF4UI Unit1: Review Part II
Date:_____

Unit 1 Part II Test Review

<u>Warmup</u>

1. Write a polynomial equation in expanded form with roots $-\frac{2}{3}$, $3+2i\sqrt{3}$ and $3-2i\sqrt{3}$.

2. If one root is 2, find the value of k, and the other root(s) for $25x^4 + kx^2 + 16 = 0$.

3. Solve, $x \in C$. Include restrictions on the variable. a) $24x^4 + 8x^3 - 3x - 1 = 0$

b)
$$\left(x+\frac{1}{x}\right)^2 - 6\left(x+\frac{1}{x}\right) + 8 = 0$$

c)
$$\frac{3}{x^2} + \frac{2x}{x+2} = \frac{3x}{x+2} + \frac{1}{x^2}$$

- **4.** Solve, $x \in R$.
- **a**) $\sqrt{3x+1} \sqrt{x+1} = 2$

b) $|5-3x| \le 3x-1$