MHF4UI Unit 2: Day 5 **Date:**

2.5 Graphing Factored Polynomial Functions

<u>Linear Functions</u>: are *first degree* functions of the form y = ax + b or f(x) = ax + b. $(\bigcup = mx + b)$ i) ii) (013) 1 (310)(0,0) ► x **→** x y = 2xf(x) = -x + 3**ii)** *x*-int: **3** observations: i) x-int: O y-int: 3*y*-int: D slope: - | slope: 2 $\left(\frac{-1}{1}\right)$ $\left(\frac{2}{1} \in run\right)$

<u>Quadratic Functions</u>: are second degree functions of the form $y = ax^2 + bx + c$ or $f(x) = ax^2 + bx + c$.

$$f(x) = -(x+1)^{2}$$

$$f(x) = -(x+1)(x+1)$$
ii) x-int(s): -| (double)

observations: i) x-int(s):
$$2, -3$$

y-int: -1 vertex: (-1,0) <u>Cubic Functions</u>: are *third degree* functions of the form $y = ax^3 + bx^2 + cx + d$ or $f(x) = ax^3 + bx^2 + cx + d$.

Ex. 1. Graph the following cubic functions accurately. Find all *x*-intercepts (zeros) and identify them as single, double or triple roots.

<u>Quartic Functions</u>: are *fourth degree* functions of the form $y = ax^4 + bx^3 + cx^2 + dx + e$.

Ex. 3.	Graph	$f(x) = x^4$	accurately by	using a	table of values.
--------	-------	--------------	---------------	---------	------------------

	x	У
	-2 -3/2	16
	-3/2	16 5 [
	-1	1
	-1/2	1 16
x-int-	→ 0	0 -
	1/2	16
	1	1
	3/2	512
	2	16
		I

Ex. 4. Sketch the following quartic functions.

- HW. 1. Complete the "Summary of Graphs of Polynomial Functions" lesson in your bound notes by following Ex. 2, 3, 4 & 5 from the note done in class.
 - 2. Complete Exercise 2.5

MHF4UI Unit 2: Day 5 **Date:**

2.5 Summary of Graphs of Polynomial Functions

— H W

I Odd Degree Functions (Linear, Cubic, Quintic)

1.
$$y = (x+2)(x-1)(x+3)$$

2. $y = (x-1)(x+2)^2$

Positive odd degree functions have equations (standard form) with positive odd degree leading terms and graphs that <u>begin with *y* increasing concave down</u> & <u>end with *y* increasing concave up</u>. Note: Concave up/down does not apply to linear functions.

Compare end behaviour to the simplest positive odd degree function: y = x

3.
$$y = 2(1-x)(x+1)(x+4)$$

4. $y = -x^2(x-2)^3$

Negative odd degree functions have equations with negative odd degree leading terms and graphs that <u>begin with *y* decreasing concave up</u> & <u>end with *y* decreasing concave down</u>. Note: Concave up/down does not apply to linear functions.

Compare end behaviour to the simplest negative odd degree function: y = -x

II Even Degree Functions (Quadratic, Quartic)

Positive even degree functions have equations with positive even degree leading terms and graphs that <u>begin with *y* decreasing concave up</u> & <u>end with *y* increasing concave up</u>.

Compare end behaviour to the simplest positive even degree function: $y = x^2$

7. $y = -x^2(x+3)^2$

Negative even degree functions have equations with negative even degree leading terms and graphs that <u>begin with *y* increasing concave down</u> & <u>end with *y* decreasing concave down</u>.

Compare end behaviour to	the simplest negative even	degree function: $y = -x^2$
1		

Type of Function & Comparison Function	End Behaviour of $f(x)$ as $x \rightarrow -\infty$	End Behaviour of $f(x)$ as $x \to +\infty$
positive odd degree: $y = x$	$f(x) \to -\infty$	$f(x) \rightarrow +\infty$
negative odd degree: $y = -x$	$f(x) \rightarrow +\infty$	$f(x) \to -\infty$
positive even degree: $y = x^2$	$f(x) \rightarrow +\infty$	$f(x) \rightarrow +\infty$
negative even degree: $y = -x^2$	$f(x) \rightarrow -\infty$	$f(x) \to -\infty$

2.6 Graphing Expanded Polynomial Functions

1. Draw a sketch of the following functions, clearly labeling all x-intercepts.

e)
$$g(x) = x^{3} - 9x^{2} + 27x - 27$$

 $g(x) = (x - 3)(x^{2} - 6x + 9)$
 $g(x) = (x - 3)(x^{-3})(x - 3)$
 $g(x) = (x - 3)^{3}$ Compare to $y = x$
 y
 $(x - 3)(x - 3)(x - 3)(x - 3)$
 $g(x) = (x - 3)^{3}$ Compare to $y = x$
 y
 $(x - 3)(x - 3)(x - 3)(x - 3)$
 $(x - 4)^{3}$
 $(x - 4)^{3}$

Ex. 2. Use the graph of each polynomial function to:

- i) identify the polynomial as *quadratic*, *cubic*, *quartic* or *quintic*
- ii) state the sign of the leading coefficient of its function
- iii) state the number & nature of roots to the corresponding equation used to determine the zeros

b)

- iv) determine the number of turning points
- v) describe the end behavior
- a)

c)

HW. Exercise 2.6

Date:

2.7 Determining the Equations of Polynomial Functions

Ex. 3. Determine the equation of each polynomial function in *factored* form, from its graph.

Ex. 4. The points (1,1), (2,-3), (3,5), (4,37), (5,105) and (6,221) lie on the graph of a function. Determine the equation of the polynomial function.

Solution:

Determine if the polynomial function f(x) is *linear*, *quadratic*, *cubic*, *quartic*, *or quintic* by calculating the *first differences*, *second differences*, *third differences*, *and so on*.

$$\frac{x}{1} \quad f(x) \quad \Delta f(x) \quad \Delta^{3} f(x) \quad \Delta^{3} f(x) \quad \Delta^{3} f(x) \quad \Delta^{3} f(x) \quad \nabla^{3} f(x) \quad \nabla^{$$

HW. for Unit 2 Part I Test: Unit 2 Review of 2.1-2.7