Linear Functions: are first degree functions of the form $y=a x+b$ or $f(x)=a x+b$.

$y=2 x$
ii)

$f(x)=-x+3$
observations: i) x-int: O
y-int: 0
slope: 2

$$
\binom{\frac{2}{1} \leftarrow r i s e}{\leftarrow r u n}
$$

ii) x-int: 3
y-int: 3
slope: - I

$$
\left(\frac{-1}{1}\right)
$$

Quadratic Functions: are second degree functions of the form $y=a x^{2}+b x+c$

$$
\text { or } f(x)=a x^{2}+b x+c
$$

ii)

$$
y=(x-2)(x+3)
$$

$f(x)=-(x+1)^{2}$

$$
f(x)=-(x+1)(x+1)
$$

ii) x-int(s): -1 (double)
y-int: -1
vertex: $(-1,0)$

$$
\begin{aligned}
y \text {-int: } & -b \\
\text { vertex: } h & =\frac{2+(-3)}{2} \\
h & =-\frac{1}{2} \\
\text { At } x & =-\frac{1}{2}: \\
y & =\left(-\frac{1}{2}-2\right)\left(-\frac{1}{2}+3\right) \\
y & =-6 \frac{1}{4}
\end{aligned}
$$

Cubic Functions: are third degree functions of the form $y=a x^{3}+b x^{2}+c x+d$

$$
\text { or } f(x)=a x^{3}+b x^{2}+c x+d
$$

Ex. 1. Graph the following cubic functions accurately. Find all x-intercepts (zeros) and identify them as single, double or triple roots.
a) $f(x)=x^{3}$

For x-int: $0=x^{3}$
$0=x \cdot x \cdot x$
$x=0$ or $x=0$ or $x=0$
$\therefore x$-int is 0 (triple root)

x	$f(x)$
-2	-8
-1	-1
0	0
1	1
2	8

b) $y=\frac{1}{2}(x+3)(x+1)(x-1)$

$$
\text { For } x-\operatorname{int}: y=0
$$

$\therefore x$-ints are $\frac{-3,-1,1}{(\text { single roots })}$

c) $f(x)=-x^{2}(x+3)$

For x-ints: $f(x)=0$

Ex. 2. Sketch the following cubic functions by finding all x-intercepts (zeros) and identifying them as single, double or triple roots.
a) $f(x)=-(x-2)(x+1)(x+4)$
b) $y=(2 x-5)^{3}$
$\therefore x$-ints are $2,-1,-4$
$\begin{aligned} f(-5) & \Rightarrow-(-)(-)(-) \\ & \Rightarrow+\end{aligned}$
x-ints are $\frac{5}{2}$ (triple)

$$
f(2) \Rightarrow(-)^{3}
$$

$$
\Rightarrow-
$$

c) $f(x)=(x-2)(x+1)^{2}$ x-ints are $\alpha_{1}-1$
single double

$$
f(-2) \Rightarrow(-)(-)^{2}
$$

$$
\Rightarrow-
$$

Quartic Functions: are fourth degree functions of the form $y=a x^{4}+b x^{3}+c x^{2}+d x+e$.

Ex. 3. Graph $f(x)=x^{4}$ accurately by using a table of values.

Ex. 4. Sketch the following quartic functions.
a) $f(x)=(2-x)(x+2)(x-4)(x+4)$ x-int are $2,-2,4,-4$ $f(-5) \Rightarrow(+)(-)(-)(-)$ all single $\Rightarrow-\quad y$

c) $f(x)=(2 x-1)(x+3)^{3}$

b) $y=\frac{1}{2} x^{2}(x-2)^{2}$
x-int are $0,{ }^{2}$ double
double
Test: $x=-1$
$y \rightarrow(-)^{2}(-)^{2}$
$\Rightarrow+$

x-incs are $\frac{1}{2},-3$

$$
\begin{gathered}
\text { single } \\
\text { Test : } f(-4) \Rightarrow(-)(-)^{3} \\
\Rightarrow t
\end{gathered}
$$

Ex. 5. Sketch the quintic function $y=x(x+4)^{3}(2 x+5)$.

1. $y=(x+2)(x-1)(x+3)$
2. $y=(x-1)(x+2)^{2}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad
Positive odd degree functions have equations (standard form) with positive odd degree leading terms and graphs that begin with y increasing concave down $\&$ end with y increasing concave up. Note: Concave up/down does not apply to linear functions.

Compare end behaviour to the simplest positive odd degree function: $y=x$
3. $y=2(1-x)(x+1)(x+4)$
4. $y=-x^{2}(x-2)^{3}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad

Negative odd degree functions have equations with negative odd degree leading terms and graphs that begin with y decreasing concave up $\&$ end with y decreasing concave down. Note: Concave up/down does not apply to linear functions.

II Even Degree Functions (Quadratic, Quartic)

5. $y=(x+1)(x-2)$
6. $y=(x-2)(x+3)(x+1)(x-4)$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad
Positive even degree functions have equations with positive even degree leading terms and graphs that begin with y decreasing concave up $\&$ end with y increasing concave up.

Compare end behaviour to the simplest positive even degree function: $y=x^{2}$
7. $y=-x^{2}(x+3)^{2}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad

Negative even degree functions have equations with negative even degree leading terms and graphs that begin with y increasing concave down $\&$ end with y decreasing concave down.

Compare end behaviour to the simplest negative even degree function: $y=-x^{2}$

 Comparison Function	End Behaviour of $\boldsymbol{f}(\boldsymbol{x})$ as $x \rightarrow-\infty$	End Behaviour of $\boldsymbol{f}(\boldsymbol{x})$ as $x \rightarrow+\infty$
positive odd degree: $\quad y=x$	$f(x) \rightarrow-\infty$	$f(x) \rightarrow+\infty$
negative odd degree: $\quad y=-x$	$f(x) \rightarrow+\infty$	$f(x) \rightarrow-\infty$
positive even degree: $\quad y=x^{2}$	$f(x) \rightarrow+\infty$	$f(x) \rightarrow+\infty$
negative even degree: $\quad y=-x^{2}$	$f(x) \rightarrow-\infty$	$f(x) \rightarrow-\infty$

\qquad 2.6 Graphing Expanded Polynomial Functions

1. Draw a sketch of the following functions, clearly labeling all x-intercepts.
a)

$$
\begin{aligned}
& y=6 x^{2}+4 x-16 \\
& y=2\left(3 x^{2}+2 x-8\right) \\
& y=2(3 x-4)(x+2)
\end{aligned}
$$

$\therefore x$-ints are $\frac{4}{3},-2$ (both single)
Compare to $y=x^{2} \uparrow$

c) $y=-x^{4}+9 x^{2}$

$$
\begin{aligned}
& y=-x^{2}\left(x^{2}-9\right) \\
& y=-x^{2}(x-3)(x+3)
\end{aligned}
$$

$\therefore x$-ins are ${\underset{r}{r}}^{0}, 1 \underbrace{-3,3}_{\text {single }}$
Compare to $y=-x^{2} \downarrow$

b)

$$
\begin{aligned}
& f(x)=-x^{3}-x^{2}+9 x+9 \\
& f(x)=-x^{2}(x+1)+9(x+1) \\
& f(x)=(x+1)\left(-x^{2}+9\right) \\
& f(x)=-(x+1)\left(x^{2}-9\right) \\
& f(x)=-(x+1)(x-3)(x+3)
\end{aligned}
$$

$\therefore x$-ints are $-3,-1,3$ (all single)
Compare to $y=-x \quad$.

d)

$$
\begin{aligned}
& f(x)=16 x^{5}+48 x^{4}+36 x^{3} \\
& f(x)=4 x^{3}\left(4 x^{2}+12 x+9\right) \\
& f(x)=4 x^{3}(2 x+3)(2 x+3) \\
& f(x)=4 x^{3}(2 x+3)^{2}
\end{aligned}
$$

$\therefore x$-ints are $-\frac{3}{2}, 0$
double λ^{π} triple

e) $g(x)=x^{3}-9 x^{2}+27 x-27$

$$
\begin{aligned}
& g(x)=(x-3)\left(x^{2}-6 x+9\right) \\
& g(x)=(x-3)(x-3)(x-3) \\
& g(x)=(x-3)^{3}
\end{aligned}
$$

Compare to $y=x$

$$
\begin{gathered}
x - 3 \longdiv { x ^ { 2 } - 6 x + 9 } \\
\frac{x^{3}-9 x^{2}+27 x-27}{-6 x^{2}}+27 x \\
\frac{-6 x^{2}+18 x}{9 x-27} \\
\frac{9 x-27}{0}
\end{gathered}
$$

f)

$$
\begin{aligned}
& y=-2 x^{3}-7 x^{2}-2 x+3 \\
& y=-\left(2 x^{3}+7 x^{2}+2 x-3\right) \\
& y=-(x+1)\left(2 x^{2}+5 x-3\right) \\
& y=-(x+1)(2 x-1)(x+3)
\end{aligned}
$$

$\therefore x$-ints are $-3,-1, \frac{1}{2}$ (all single)
Compare to $y=-x$

Ex. 2. Use the graph of each polynomial function to:
i) identify the polynomial as quadratic, cubic, quartic or quintic
ii) state the sign of the leading coefficient of its function
iii) state the number \& nature of roots to the corresponding equation used to determine the zeros
iv) determine the number of turning points
v) describe the end behavior

a)

i) cubic
ii) negative
iii) 3 real roots
iv) As $x \rightarrow-\infty, y \rightarrow+\infty$

As $x \rightarrow+\infty, y \rightarrow-\infty$ V) 2 turning pts
c)

i) quartic
ii) positive
iii) 2 real roots
iii) As $x \rightarrow-\infty, y \rightarrow+\infty$

As $x \rightarrow+\infty, y \rightarrow+\infty$
v) 3 turning points

i) quartic
ii) negative
iii) 4 real roots
iv) As $x \rightarrow-\infty, y \rightarrow-\infty$
v) 3turning pts

$$
\frac{3}{2}=a(-1+2)^{3}(-1-2)^{2}
$$

$$
\frac{3}{2}=a(1)^{3}(-3)^{2} \quad \therefore \text { the equation is }
$$

HW. Exercise 2.6
Day 7. Let $f(x)=$
d)

i) quintic
ii) positive
iii) 5 real root
iv) As $x \rightarrow+\infty, y \rightarrow+\infty$
As $x \rightarrow-\infty, y \rightarrow-\infty$
v) 2 turning

$$
\frac{1}{9}\left(\frac{3}{2}\right)=\left(\begin{array}{ll}
9 a) \frac{1}{9} & f(x)=\frac{1}{6}(x+2)^{3}(x-2)^{2}
\end{array}\right.
$$

$$
\therefore a=\frac{1}{6}
$$

Date:
Ex. 1. a) Determine an equation for the family of cubic functions whose x-intercepts are $-2,1$ and 3 . Let $f(x)=a(x+2)(x-1)(x-3)$ represent the family of cubic functions. b) Determine an equation for the particular member of this family, in factored form, whose y-intercept is 9 . Find a if $f(0)=9$

$$
\begin{aligned}
& 9=a(0+2)(0-1)(0-3) \\
& 9=a(2)(-1)(-3) \\
& 9=6 a \\
& 3=a
\end{aligned} \quad \therefore \text { the required } \quad \text { 位 }
$$

$$
\begin{array}{ll}
9=6 a & \text { : } \\
\frac{3}{2}=a & \text { equation is } f(x)=\frac{3}{2}(x+2)(x-1)(x-3)
\end{array}
$$

Ex. 2. Determine the equation of the quartic function, in standard form, with zeros $\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}$ and 0 (order 2) passing through the point $(-1,-18)$.
Let $f(x)=a(x)^{2}(2 x-1+\sqrt{3})(2 x-1-\sqrt{3})$

$$
\begin{aligned}
& f(-1)=-18 \\
& -18=a(-1)^{2}(-2-1+\sqrt{3})(-2-1-\sqrt{3}) \\
& -18=a(1)(-3+\sqrt{3})(-3-\sqrt{3}) \\
& -18=a\left[(-3)^{2}-(\sqrt{3})^{2}\right] \\
& -18=6 a \\
& \therefore a=-3
\end{aligned}
$$

$$
\begin{aligned}
& \therefore f(x)=-3 x^{2}(2^{2 x-1}+\underbrace{\sqrt{3}})(\frac{2 x-1}{a}-\underbrace{\sqrt{3}}) \\
& f(x)=-3 x^{2}\left[(2 x-1)^{2}-(\sqrt{3})^{2}\right] \\
& f(x)=-3 x^{2}\left(4 x^{2}-4 x+1-3\right) \\
& f(x)=-3 x^{2}\left(4 x^{2}-4 x-2\right) \\
& \therefore f(x)=-12 x^{4}+12 x^{3}+6 x^{2} \text { is } \\
& \text { the equation in standard form. }
\end{aligned}
$$

Ex. 3. Determine the equation of each polynomial function in factored form, from its graph.

c) Ex. 2. d) from Unit 2: Day 6

x-int are $-2,3$
(both double)
Let $f(x)=a(x+2)^{2}(x-3)^{2}$
Find a if $f(2)=4$
$a(2+2)^{2}(2-3)^{2}=4$
$16 a=4$
$a=\frac{4}{16}$
$a=\frac{1}{4}$
$\therefore f(x)=\frac{1}{4}(x+2)^{2}(x-3)^{2}$ is the required equation.

Ex. 4. The points $(1,1),(2,-3),(3,5),(4,37),(5,105)$ and $(6,221)$ lie on the graph of a function. Determine the equation of the polynomial function.

Solution:
Determine if the polynomial function $f(x)$ is linear, quadratic, cubic, quartic, or quintic by calculating the first differences, second differences, third differences, and so on.

$\because f(x)$ is cubic

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

$$
\begin{array}{l|l}
f(1)=1 & a+b+c+d=1 \\
f(2)=3 & 8 a+4 b+2 c+d=-3 \\
f(3)=5 & 27 a+9 b+3 c+d=5 \\
f(4)=37 & 64 a+16 b+4 c+d=37
\end{array}
$$

Eliminate d:
(2) -(1)

$$
\begin{align*}
& 7 a+3 b+c=-4 \tag{5}\\
& 19 a+5 b+c=8 \tag{b}\\
& 37 a+7 b+c=32
\end{align*}
$$

(3) -(2)
(4) $-(3)$

Eliminate c :
(b) $-(5) \mid 12 a+2 b=12$
(7)-(6) $18 a+2 b=24$

Eliminate b:
(9)-8) $6 a=12$

$$
\therefore a=2
$$

\rightarrow Sub $a=2$ into 8:

$$
\begin{aligned}
12(2)+2 b & =12 \\
24+2 b & =12 \\
2 b & =-12 \\
\therefore b & =-6
\end{aligned}
$$

Sub $a=2, b=-6$ into (5)

$$
\begin{aligned}
7(2)+3(-6)+c & =-4 \\
14-18+c & =-4 \\
-4+c & =-4 \\
0 c & =0
\end{aligned}
$$

Sub $a=2, b=-6, c=0$ into (1)

$$
(2)+(-6)+(0)+d=1
$$

$$
-4+d=1
$$

$$
\therefore d=5
$$

$\therefore f(x)=2 x^{3}-6 x^{2}+5$ is the required equation.

HW. Exercise 2.7
HW. for Unit 2 Part I Test: Unit 2 Review of 2.1-2.7

