\qquad

UNIT 2: GRAPHING FUNCTIONS

2.1 Graphing Quadratic, Cubic, Square Root, Absolute Value and Reciprocal Functions Using Transformations

Given $y=a f[k(x-d)]+c$, the transformations on the graph of $y=f(x)$ are as follows:
i) vertical reflection in the x-axis if $a<0$
ii) vertical stretch by a factor of $|a|$

Note: A stretch is an expansion if the stretch factor is more than 1 or a compression if the stretch factor is between 0 and 1 .
iii) horizontal reflection in the y-axis if $k<0$
iv) horizontal stretch by a factor of $\frac{1}{|k|}$
v) horizontal translation right $|d|$ units if $d>0$ or left $|d|$ units if $d<0$
vi) vertical translation up $|c|$ units if $c>0$ or down $|c|$ units if $c<0$

$$
(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)
$$

1. The graph of $y=f(x)$ is shown. Match each equation with its graph by describing the transformations applied to the graph of $y=f(x)$.

a) $y=f(x-7)-4$
b) $y=-f(x)-4$
c) $y=4 f(x)$
d) $y=-f(-x)$
e) $y=3 f(x+9)-4$
f) $y=f\left(\frac{1}{2} x+5\right)+3$
2. Memorize each of the following base functions.

Domain: $\{x \in \mathfrak{R}\}$, Range: $\{y \in \mathfrak{R} \mid y \geq 0\}$
c) square root function $f(x)=\sqrt{x}$

Domain: $\{x \in \mathfrak{R} \mid x \geq 0\}$, Range: $\{y \in \mathfrak{R} \mid y \geq 0\}$
b) cubic function $f(x)=x^{3}$

Domain: $\{x \in \mathfrak{R}\}$, Range: $\{y \in \mathfrak{R}\}$
d) absolute value function $f(x)=|x|$

Domain: $\{x \in \mathfrak{R}\}$, Range: $\{y \in \mathfrak{R} \mid y \geq 0\}$
e) reciprocal function $f(x)=\frac{1}{x}$

The vertical asymptote of $f(x)=\frac{1}{x}$ is $x=0$.
As $x \rightarrow 0^{-}, f(x) \rightarrow-\infty$ and as $x \rightarrow 0^{+}, f(x) \rightarrow+\infty$
"As x approaches 0 from the left, "as x approaches 0 from the right, $f(x)$ approaches negative infinity" $f(x)$ approaches positive infinity."

The horizontal asymptote of $f(x)=\frac{1}{x}$ is $y=0$.
As $x \rightarrow-\infty, f(x) \rightarrow 0$ and as $x \rightarrow+\infty, f(x) \rightarrow 0$.

Domain: $\{x \in \mathfrak{R} \mid x \neq 0\}$, Range: $\{y \in \mathfrak{R} \mid y \neq 0\}$

Ex. 1. Graph each of the following by naming and applying transformations on an appropriate function.
a) $y=-2 \sqrt{-3(x-5)}+4 \leftrightarrow y=a \sqrt{k(x-d)}+c$ Transformations on are:

i) Domain: \qquad ii) Range:
\qquad
b) $f(x)=-|2(x+1)|-3 \leftrightarrow f(x)=a|k(x-d)|+c$

Transformations on
are:
c) $g(x)=\frac{1}{3}(x-2)^{3}+1 \leftrightarrow g(x)=a[k(x-d)]^{3}+c$

Transformations on
are:

Ex. 2. Graph each of the following by naming and applying transformations on an appropriate function. Then, state the domain and range.
a) $y=\left(0.4 x+\frac{4}{5}\right)^{2} \leftrightarrow y=a[k(x-d)]^{2}+c \quad$ b) $f(x)=\frac{1}{3-x}-2 \leftrightarrow f(x)=a\left[\frac{1}{k(x-d)}\right]+c$

Transformations on
are:
Transformations on
are:

i) Domain: \qquad i) Domain: \qquad
ii) Range: \qquad ii) Range: \qquad

HW. Exercise 2.1

Date: \qquad

2.2 Graphing Reciprocal and Absolute Value Functions of

$$
y=f(x)
$$

PART I: Using the graph of $y=f(x)$ to graph its reciprocal function $y=\frac{1}{f(x)}$

1. If $f(x)=0, \frac{1}{f(x)}$ dne. Draw vertical asymptotes at the zeros.
2. If $f(x)= \pm 1, \frac{1}{f(x)}= \pm 1$. Mark these invariant points.
3. i) If $f(x)$ increases, $\frac{1}{f(x)}$ decreases. ii) If $f(x)$ decreases, $\frac{1}{f(x)}$ increases.
iii) If $f(x)$ is constant, $\frac{1}{f(x)}$ is also constant. Graph accordingly.
4. If $f(x) \rightarrow \pm \infty, \frac{1}{f(x)} \rightarrow 0$. Draw a horizontal asymptote at $y=0$.

Ex. 1. Use the graph of $y=f(x)$ to sketch the graph of $y=\frac{1}{f(x)}$ for each of the following:
a)

b)

Ex. 2. Graph each function $y=f(x)$ and its reciprocal function $y=\frac{1}{f(x)}$ on the same grid.
a) $f(x)=\sqrt{x+5}-2$
b) $f(x)=-|x-2|+3$

PART II: Using the graph of $y=f(x)$ to graph its absolute value function $y=|f(x)|$

1. All points on the graph of $y=f(x)$ where $f(x) \geq 0$ are also on the graph of $y=|f(x)|$.

Graph over these invariant points with a different colour.
2. All points on the graph of $y=f(x)$ where $f(x)<0$ are vertically reflected in the x-axis. Use the same colour to reflect these points in order to complete the graph.

Ex. 1. Use the graph of $y=f(x)$ to sketch the graph of $y=|f(x)|$ for each of the following:
a)

b)

Ex. 2. Graph each function $y=f(x)$ and its absolute value function $y=|f(x)|$ on the same grid.
a) $f(x)=-0.5 x^{2}-4 x-5$
b) $f(x)=\left(-\frac{1}{3} x+1\right)^{3}-1$

HW. Exercise 2.2

Date:

\qquad

2.3 Graphing Piecewise Functions

Ex. 1. The graph of a piecewise function \boldsymbol{f} is shown. Use the graph to determine the following:
a) $f\left(-\frac{1}{2}\right)$
b) $f(3)$
c) $f(1)$
d) $f(2)$
e) the value(s) of x at which the function is discontinuous
f) as $x \rightarrow 1^{-}, f(x) \rightarrow$ \qquad and as $x \rightarrow 1^{+}, f(x) \rightarrow$ \qquad

"as x approaches 1 from the left"
"as x approaches 1 from the right"
g) the end behaviour of the function f

Ex. 2. For each piecewise function sketch the graph and determine the value(s) of x at which the function is discontinuous. Identify the discontinuities as jump, removable or infinite.
a) $f(x)= \begin{cases}2-2 x & \text { if } x<2 \\ (x-2)^{2} & \text { if } x \geq 2\end{cases}$

b) $f(x)= \begin{cases}-2 & \text { if } x \in(-\infty, 1) \\ -x-1 & \text { if } x \in[1, \infty)\end{cases}$

c) $g(x)= \begin{cases}-x^{3} & \text { if } x \in(-\infty, 0) \\ \frac{2}{x-2} & \text { if } x \in(0, \infty)\end{cases}$

d) $f(x)= \begin{cases}\sqrt{3-x} & \text { if } x<-1 \\ 5 & \text { if } x=-1 \\ -2|x|+4 & \text { if } x>-1\end{cases}$

2.4 Piecewise Functions and Continuity Continued

Ex. 1. Write an algebraic representation of each piecewise function, using function notation.
a)

b)

Ex. 2. Without graphing determine if the function below is continuous or discontinuous.
If it is discontinuous, state where it is discontinuous.

$$
g(x)=\left\{\begin{array}{cl}
x+1 & \text { if } x \leq 0 \\
2 x+1 & \text { if } 0<x<3 \\
4-x^{2} & \text { if } x \geq 3
\end{array}\right.
$$

Ex. 3. Given $f(x)=\left\{\begin{array}{cc}5-x^{2} & \text { if } x \in(-\infty,-1) \\ a x+b & \text { if } x \in[-1,1) \\ 2 x^{2} & \text { if } x \in[1, \infty)\end{array}\right.$, determine the values of a and b so that the function is continuous for all $x \in(-\infty, \infty)$.
2. Rewrite the following functions involving absolute value as piecewise functions and then graph.
a) $f(x)=|4-x|$

b) $f(x)=\frac{x^{2}|x+2|}{x+2}$

c) $f(x)=\frac{x^{2}+|x-1|-1}{|x-1|}$

2.5 Graphing Factored Polynomial Functions

Linear Functions: are first degree functions of the form $y=a x+b$ or $f(x)=a x+b$.
i)

$y=2 x$

$$
f(x)=-x+3
$$

observations: i) x-int:
ii) x-int:
y-int:
y-int:
slope:
slope:

Quadratic Functions: are second degree functions of the form $y=a x^{2}+b x+c$ or $f(x)=a x^{2}+b x+c$.

$$
y=(x-2)(x+3)
$$

ii)

$f(x)=-(x+1)^{2}$
observations: i) x-int(s):
y-int:
vertex:
ii) x-int(s):
y-int:
vertex:

Cubic Functions: are third degree functions of the form $y=a x^{3}+b x^{2}+c x+d$

$$
\text { or } f(x)=a x^{3}+b x^{2}+c x+d
$$

Ex. 1. Graph the following cubic functions accurately. Find all x-intercepts (zeros) and identify them as single, double or triple roots.
a) $f(x)=x^{3}$

x	$f(x)$
-2	
-1	
0	
1	
2	

b) $y=\frac{1}{2}(x+3)(x+1)(x-1)$

x	y
-4	
-3	
-2	
-1	
0	
1	
2	

c) $f(x)=-x^{2}(x+3)$

x	$f(x)$
-4	
-3	
-2	
-1	
0	
1	

Ex. 2. Sketch the following cubic functions by finding all x-intercepts (zeros) and identifying them as single, double or triple roots.
a) $f(x)=-(x-2)(x+1)(x+4)$
b) $y=(2 x-5)^{3}$

c) $f(x)=(x-2)(x+1)^{2}$

Quartic Functions: are fourth degree functions of the form $y=a x^{4}+b x^{3}+c x^{2}+d x+e$.
Ex. 3. Graph $f(x)=x^{4}$ accurately by using a table of values.

x	y
-2	
$-3 / 2$	
-1	
$-1 / 2$	
0	
$1 / 2$	
1	
$3 / 2$	
2	

Ex. 4. Sketch the following quartic functions.
a) $f(x)=(2-x)(x+2)(x-4)(x+4)$
b) $y=\frac{1}{2} x^{2}(x-2)^{2}$

c) $f(x)=(2 x-1)(x+3)^{3}$

Ex. 5. Sketch the quintic function $y=x(x+4)^{3}(2 x+5)$.

HW. 1. Complete the "Summary of Graphs of Polynomial Functions" lesson in your bound notes by following Ex. 2, 3, $\mathbf{4 \& 5}$ from the note done in class.
2. Complete Exercise 2.5

I Odd Degree Functions (Linear, Cubic, Quintic)

1. $y=(x+2)(x-1)(x+3)$
2. $y=(x-1)(x+2)^{2}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad

Positive odd degree functions have equations (standard form) with positive odd degree leading terms and graphs that begin with y increasing concave down \& end with y increasing concave up. Note: Concave up/down does not apply to linear functions.

Compare end behaviour to the simplest positive odd degree function: $y=x$
3. $y=2(1-x)(x+1)(x+4)$
4. $y=-x^{2}(x-2)^{3}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad

Negative odd degree functions have equations with negative odd degree leading terms and graphs that begin with y decreasing concave up \& end with y decreasing concave down. Note: Concave up/down does not apply to linear functions.

II Even Degree Functions (Quadratic, Quartic)

5. $y=(x+1)(x-2)$
6. $y=(x-2)(x+3)(x+1)(x-4)$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad
Positive even degree functions have equations with positive even degree leading terms and graphs that begin with y decreasing concave up $\&$ end with y increasing concave up.

Compare end behaviour to the simplest positive even degree function: $y=x^{2}$
7. $y=-x^{2}(x+3)^{2}$

*** As $x \rightarrow-\infty, y \rightarrow$ \qquad and as $x \rightarrow+\infty, y \rightarrow$ \qquad

Negative even degree functions have equations with negative even degree leading terms and graphs that begin with y increasing concave down \& end with y decreasing concave down.

Compare end behaviour to the simplest negative even degree function: $y=-x^{2}$

 Comparison Function	End Behaviour of $\boldsymbol{f}(\boldsymbol{x})$ as $x \rightarrow-\infty$	End Behaviour of $\boldsymbol{f}(\boldsymbol{x})$ as $x \rightarrow+\infty$
positive odd degree: $\quad y=x$	$f(x) \rightarrow-\infty$	$f(x) \rightarrow+\infty$
negative odd degree: $\quad y=-x$	$f(x) \rightarrow+\infty$	$f(x) \rightarrow-\infty$
positive even degree: $\quad y=x^{2}$	$f(x) \rightarrow+\infty$	$f(x) \rightarrow+\infty$
negative even degree: $\quad y=-x^{2}$	$f(x) \rightarrow-\infty$	$f(x) \rightarrow-\infty$

2.6 Graphing Expanded Polynomial Functions

1. Draw a sketch of the following functions, clearly labeling all x-intercepts.
a) $y=6 x^{2}+4 x-16$
b) $f(x)=-x^{3}-x^{2}+9 x+9$

c) $y=-x^{4}+9 x^{2}$
d) $f(x)=16 x^{5}+48 x^{4}+36 x^{3}$

e) $g(x)=x^{3}-9 x^{2}+27 x-27$

f) $y=-2 x^{3}-7 x^{2}-2 x+3$

Ex. 2. Use the graph of each polynomial function to:
i) identify the polynomial as quadratic, cubic, quartic or quintic
ii) state the sign of the leading coefficient of its function
iii) state the number \& nature of roots to the corresponding equation used to determine the zeros
iv) determine the number of turning points
v) describe the end behavior
a)

b)

c)

d)

Ex. 1. a) Determine an equation for the family of cubic functions whose x-intercepts are $-2,1$ and 3 .
b) Determine an equation for the particular member of this family, in factored form, whose y-intercept is 9 .

Ex. 2. Determine the equation of the quartic function, in standard form, with zeros $\frac{1-\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}$ and 0 (order 2) passing through the point $(-1,-18)$.

Ex. 3. Determine the equation of each polynomial function in factored form, from its graph.
a)

b)

c) Ex. 2. d) from Unit 2: Day 6

Ex. 4. The points $(1,1),(2,-3),(3,5),(4,37),(5,105)$ and $(6,221)$ lie on the graph of a function. Determine the equation of the polynomial function.

Solution:

Determine if the polynomial function $f(x)$ is linear, quadratic, cubic, quartic, or quintic by calculating the first differences, second differences, third differences, and so on.

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
1	1			
2	-3			
3	5			
4	37			
5	105			
6	221			

