\qquad

1. Graph the following rational functions by finding and labeling any asymptotes and intercepts. Include a table of values for a more accurate graph.
a) $f(x)=\frac{2 x-1}{x+1}$
(5) Does $f(x)$ cross
the H.A?
(1) $\underline{\underline{x} \text {-int }}$ is $\frac{1}{2}$
$\frac{2 x-1}{x+1}=\frac{2}{1}$
(2) y-int is -1

$$
2 x-1=2 x+2
$$

(3) V.A. is $x=-1$

$$
0=3
$$

b) $g(x)=\frac{6}{x^{2}+2 x-3}$

$$
g(x)=\frac{6}{(x+3)(x-1)}
$$

(1) x-int none

(2) y-int is -2
(3) V.A are $x=-3, x=1$
(4) For HA: $g(x)=\frac{6}{x^{2}+2 x-3}$

As $x \rightarrow \pm \infty, g(x) \rightarrow 0$
$\therefore H A$ is $y=0$
(5) $g(x)$ does not cross H.A and no $y_{x-i n t}$.

2. Using the graphs from the previous question, solve the following inequalities:
a) $f(x)>0$
b) $g(x)<0$
$\therefore x<-1$ or $x>\frac{1}{2}$
$\therefore-3<x<1$
3. Graph the following rational functions by finding and labeling any asymptotes and intercepts. Include a table of values for a more accurate graph.
a) $f(x)=\frac{3 x-6}{x^{2}-2 x-8}$

$$
f(x)=\frac{3(x-2)}{(x-4)(x+2)}
$$

(1) x-int is 2

(6) | x | $f(x)$ |
| ---: | ---: |
| -3 | $-\frac{15}{7}$ |
| 3 | $-\frac{3}{5}$ |
| 5 | $\frac{9}{7}$ |

(2) y-int is $\frac{3}{4}$
(3) V.A. are $x=-2, x=4$
(4) For H.A. $f(x)=\frac{3 x-6}{x^{2}-2 x-8} \div x^{2}$

$$
f(x)=\frac{\frac{3}{x}-\frac{6}{x^{2}}}{1-\frac{2}{x}-\frac{8}{x^{2}}}
$$

As $x \rightarrow \pm \infty, f(x) \rightarrow 0$
$\therefore H A$ is $y=0$

$$
\begin{aligned}
& \text { at }(z, 0) \text { since HA is } y=0(x-1 \text { - } x \text { is } 2 \text {. } \\
& \text { and } x \text { in }
\end{aligned}
$$

b) $g(x)=\frac{6 x^{2}-5 x+1}{2 x+1}$
$g(x)=\frac{(3 x-1)(2 x-1)}{2 x+1}$
(1) x-incs are $\frac{1}{3}, \frac{1}{2}$
(2) tint is 1
(3) V.A. is $x=-\frac{1}{2}$
(4) For L.O.A: $g(x)=(3 x-4)+\frac{5}{2 x+1}$ $\frac{3 x-4}{-5 x+1}$ As $x \rightarrow \pm \infty, g(x) \rightarrow 3 x-4$
$2 x + 1 \longdiv { 6 x ^ { 2 } - 5 x + 1 }$
$\frac{6 x^{2}+3 x}{-8 x+1}$
\therefore L.O.A. is $y=3 x-4$
$\frac{-8 x-4}{5}$
(5) Does $g(x)$ cross the LDA?

$\frac{6 x^{2}-5 x+1}{2 x+1}=\frac{3 x-4}{1}$

$$
\begin{aligned}
& 2 x+1 \\
& 6 x^{2}-5 x+1=6 x^{2}-5 x-4 \\
& 1=-4 \therefore \text { does not cross. }
\end{aligned}
$$

4. Using the graphs from the previous question, solve the following inequalities:

Answer using a solution set.
a) $f(x) \geq 0$
b) $g(x) \leq 0$
$\therefore S . S=\{x \in \mathbb{R} \mid-2<x \leq 2$ or $x>4\}$
$\because S . S=\left\{x \in \mathbb{R} \left\lvert\, x<-\frac{1}{2}\right.\right.$ or $\left.\frac{1}{3} \leq x \leq \frac{1}{2}\right\}$
5. Graph the following rational functions by finding and labeling any asymptotes and intercepts. Include a table of values for a more accurate graph.
a) $f(x)=\frac{2+x-x^{2}}{(x-1)^{2}}$
(5) Does $f(x)$ cross the
$H . A ?$
$V A_{1}$
$x=1$
$f(x)=\frac{(2-x)(1+x)}{(x-1)^{2}} / f(x)=\frac{2+x-x^{2}}{x^{2}-2 x+1}$
$\frac{2+x-x^{2}}{x^{2}-2 x+1}=\frac{-1}{1}$
$2+x-x^{2}=-x^{2}+2 x-1$
$-x=-3$
$\begin{aligned} x & =3 \\ \therefore \text { crosses } & (3,-1)\end{aligned}$
(1) $\underline{\underline{x-i n t}}$ are $-1,2$
(2) y-int is z
(3) V.A. is $x=1$
(4) For H.A: $f(x)=\frac{-x^{2}+x+2}{x^{2}-2 x+1 \div x^{2}} \div x^{2}$

$$
\begin{aligned}
& f(x)=\frac{-1+\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{2}{x}+\frac{1}{x^{2}}} \\
& A \leq x \rightarrow \pm \infty, f(x) \rightarrow-1 \\
& \therefore+H, \text { is } y=-1
\end{aligned}
$$

y

,

$$
g(x)=\frac{(x+2)\left(x^{2}-2 x+4\right)}{x}
$$

(1) For x-int: $(x+2)\left(x^{2}-2 x+4\right)=0$

$$
\therefore x=-2 \quad \begin{array}{r}
\text { complex } \\
\text { roots }
\end{array}
$$

$\therefore x$-int is -2
(2) $\frac{y \text {-int }}{x}$ none
(3) V.A. is $x=0$
(4) For Q.O.A: $g(x)=\frac{x^{3}+8}{x}$

As $x \rightarrow \pm \infty, g(x) \rightarrow x^{2}$

$$
\begin{aligned}
& x \rightarrow \pm \infty, g(x) \rightarrow x^{2} \\
& \therefore \text { Q.O.A is } y=x^{2}
\end{aligned}
$$

(5) Does $g(x)$ cross the Q.O.A?

$$
\begin{aligned}
& \frac{x^{3}+8}{x}=\frac{x^{2}}{1} \\
& x^{3}+8=x^{3}
\end{aligned} \quad \begin{gathered}
8=0 \\
\therefore \text { does not } \\
\text { cross }
\end{gathered}
$$

6. Using the graphs from the previous question, solve the following inequalities:

Answer using interval notation.
a) $f(x) \geq 0$
$x \in[-1,1) \cup(1,2]$
b) $g(x) \leq 0$
$x \in[2,0)$
\qquad
Ex. 1. Solve the following rational inequalities graphically. State your final answer in a solution set.

$$
\text { a) } \frac{x^{2}-x-2}{x-1} \geq 0
$$

VA
Let $f(x)=\frac{x^{2}-x-2}{x-1}$

$$
f(x)=\frac{(x-2)(x+1)}{x-1}
$$

(1) x-ints are $-1,2$
(5) Does $f(x)$ cross the LOA?

$$
\frac{x^{2}-x-2}{x-1}=\frac{x}{1}
$$

$$
x^{2}-x-2=x^{2}-x
$$

$$
-2=0
$$

$\therefore f(x)$ does not cross the LO.A.

$$
\text { SSS. }=\{x \in \mathbb{R} \mid-1 \leq x<1, x \geq 2\}
$$

b) $\frac{x+1}{x-2}<\frac{x+7}{x+1}$

$$
\begin{aligned}
& (x+1) \frac{(x+1)}{(x+1)(x-2)}-\frac{(x+7)(x-2)}{(x+1)(x-2)}< \\
& \frac{(x+1)(x+1)-(x+7)(x-2)}{(x-2)(x+1)}<0 \\
& \frac{\left(x^{2}+2 x+1\right)-\left(x^{2}+5 x-14\right)}{(x-2)(x+1)}<0 \\
& \frac{-3 x+15}{(x-2)(x+1)}<0 \\
& \frac{-3(x-5)}{(x-2)(x+1)}<0
\end{aligned}
$$

Let $f(x)=\frac{-3(x-5)}{(x-2)(x+1)}$

$$
f(x)=\frac{-3 x+15}{x^{2}-x-2} \leftarrow H . A . / L . O A
$$

For L.O.A. $f(x)=x+\frac{-2}{x-1}$

$$
\begin{gathered}
\frac{x}{x-1 \sqrt{x^{2}-x-2}} \\
\frac{x^{2}-x}{0-2}
\end{gathered} \quad \therefore \therefore \text { As } x \rightarrow \pm \infty, f(x) \rightarrow x
$$

(1) x-int is 5
(2) y-int is $-7 \frac{1}{2}$
(3) V.A. are $x=2, x=-1$
(4) For H.A. $: f(x)=\frac{-3 x+15}{x^{2}-x-2} \div x^{2}$
(5) $f(x)$ crosses the H.A. at $(5,0)$
since H. A is $y=0(x-a \times 15)$ and x-intuit $x=5$

$$
S S=\{x \in \mathbb{R} \mid-1-x<2, x>5\}
$$

$$
\begin{gathered}
\text { c) }-\frac{1}{(2-x)^{2}} \leq-1 \\
-\frac{1}{(2-x)^{2}}+1 \leq 0 \\
\frac{1}{1} \frac{(2-x)^{2}}{(2-x)^{2}}-\frac{1}{\left(2-x^{2}\right)} \leq 0 \\
\frac{4-4 x+x^{2}-1}{4-4 x+x^{2}} \leq 0 \\
\frac{x^{2}-4 x+3}{x^{2}-4 x+4} \leq 0 \\
\text { Let } f(x)=\frac{x^{2}-4 x+3}{x^{2}-4 x+4} \\
f(x)=\frac{(x-3)(x-1)}{(x-2)^{2}}
\end{gathered}
$$

(1) x-ints are 3 and 1
(2) y-int is $\frac{3}{4}$
(3) V.A. is $x=2$
(4) For H.A: $f(x)=\frac{1-\frac{4}{x}+\frac{3}{x^{2}}}{1-\frac{4}{x}+\frac{4}{x^{2}}}$

As $x \rightarrow \pm \infty, f(x) \rightarrow 1$
$\therefore H . A$ is $y=1$
(5)

Does $f(x)$ cross
H.A.?

$$
\begin{aligned}
& 1=\frac{x^{2}-4 x+3}{x^{2}-4 x+4} \\
& x^{2}-4 x+4=x^{2}-4 x+3 \\
& 4=3
\end{aligned}
$$

\therefore does not cross
$S S=\{x \in \mathbb{R} \mid 1 \leq x<2$ or $2<x \leq 3\}$
OR

$$
\text { ss }=\{x \in \mathbb{R} \mid 1 \leq x \leq 3, x \neq 2\}
$$

Date: \qquad 2.14 Graphing and Analyzing Polynomial \& Rational Functions With Removable and or Infinite Discontinuities
Examples
For each function given below complete the following.
a) Simplify.
b) State all values of x for which the function is discontinuous.
c) Graph.
d) Examine how the function behaves near these discontinuities and at the ends of the graph.

1. $f(x)=\frac{9-x^{2}}{x+3}$
a) $f(x)=\frac{(3-x)(3+x)}{x+31}$
b) $f(x)$ is discontinuous at $x=-3$ (removable)
$\left.\begin{array}{rl}\text { c) As } x \rightarrow-3^{-} \\ \text {As } x \rightarrow-3^{+}\end{array}, f(x) \rightarrow 6 \rightarrow 6\right\}$ behaviour $\left.\begin{array}{l}\text { The disc } \\ \text { As } x \rightarrow-\infty, f(x) \rightarrow+\infty\end{array}\right\}$ end
As $x \rightarrow+\infty, f(x) \rightarrow-\infty\{$ behaviour
2. $f(x)=\frac{x^{3}-8}{x-2}$
a)

$$
\begin{aligned}
& f(x)=\frac{\left(x^{1}-2\right)\left(x^{2}+2 x+4\right)}{x-x_{1}} \\
& f(x)=x^{2}+2 x+4, \text { hole } @ x=2
\end{aligned}
$$

b) $f(x)$ is discontinuous at

$$
x=2 \text { (removable) }
$$

C) Graph:

$$
\begin{gathered}
x=\frac{-b}{2 a} \\
x=\frac{-2}{2(1)} \\
x=-1 \\
f(-1)=3 \\
\therefore \text { Vertex Q }(-1,3)
\end{gathered}
$$

d) As $x \rightarrow 2^{-}, f(x) \rightarrow 12$

As $x \rightarrow 2^{+}, f(x) \rightarrow 12$
As $x \rightarrow-\infty, f(x) \rightarrow+\infty$
As $x \rightarrow+\infty, f(x) \rightarrow+\infty$
3. $g(x)=\frac{x^{2}-x-2}{x^{3}-4 x^{2}+x+6}$ ** 首 disisi
a) $g(x)=\frac{(x-2)(x+1)}{(x+1)\left(x^{2}-5 x+6\right)}$

$$
\begin{aligned}
& g(x)=\frac{\left(x^{\prime}-2\right)\left(x^{\prime}+1\right)}{(x+1)(x-3)(x-2)} \\
& g(x)=\frac{1}{x-3}, \quad \text { hole } @ x=-1 \quad \text { i } x=2 \\
& \left(-1,-\frac{1}{4}\right) \quad(2,-1)
\end{aligned}
$$

b) $g(x)$ is discontinuous at $\underbrace{x=-1, x=2}_{\text {removable }}$ and $\underbrace{x=3}_{\begin{array}{c}\text { infinite } \\ \text { (asymptote) }\end{array}}$
d)

$$
\begin{aligned}
& A S x \rightarrow-1^{-}, g(x) \rightarrow-\frac{1}{4} \\
& A S x \rightarrow-1^{+}, g(x) \rightarrow-\frac{1}{4} \\
& A S x \rightarrow 2^{-}, G(x) \rightarrow-1 \\
& A S x \rightarrow 2^{+}, g(x) \rightarrow-1
\end{aligned}
$$

As $x \rightarrow 3, g(x) \rightarrow-\infty$
As $x \rightarrow 3^{+}, g(x) \rightarrow+\infty$
As $x \rightarrow-\infty, g(x) \rightarrow 0$

$$
\text { As } x \rightarrow+\infty, g(x) \rightarrow 0
$$

(3) V.A: $x=3$ is the V.A.
\oplus^{\oplus}
For H.A. $y=0$ is the H.A

$$
\underset{\substack{4 S \\ x \rightarrow \pm \infty \\ \\ y}}{ } g(x)=\frac{1}{x-3} \rightarrow 0
$$

$$
\therefore H \cdot A . \text { is } y=0
$$

(5) $g(x)$ does not cross the H.A.
since $H \cdot A$ is $y=0(x$-axis $)$ and no x-int

