\qquad 2.8 Solving Polynomial Inequalities Graphically

Ex. 1. Use the graphs of the following functions to state when i) $f(x)>0$ ii) $f(x)<0$
Answer using algebraic notation.
a)

b)

i) $x<-3$ or $x>2$
ii) \qquad

Ex. 2. Solve each of the following graphically where, $x \in R$. Answer using a solution set.
a) $x^{2}-3 x-10 \geq 0$

Let $f(x)=x^{2}-3 x-10$
e graph

$$
f(x)=(x-5)(x+2)
$$

. x-ints are
5 (both ${ }^{2}$ s single)

$\angle{ }^{\circ}$. The solution set:

$$
\text { SSS. }=\{x \in \mathbb{R} \mid x \leq-2 \text { or } x \geq 5\}
$$

b) $x^{3}+x^{2}-4 x-4<0$

Let $f(x)=x^{3}+x^{2}-4 x-4$

$$
\begin{aligned}
& f(x)=x^{2}(x+1)-4(x+1) \\
& f(x)=(x+1)\left(x^{2}-4\right) \\
& f(x)=(x+1)(x-2)(x+2)
\end{aligned}
$$

$\therefore x$-ints
Compare
to $y=x$

$$
f(x)<0
$$

$$
\therefore S S=\{x \in \mathbb{R} \mid x<-2 \text { or }-1<x<2\}
$$

Ex. 3. Solve each of the following graphically where, $x \in R$. Answer using interval notation.
a) $x^{4}-10 x^{2}+9 \leq 0$

$$
\begin{aligned}
\text { Let } f(x) & =x^{4}-10 x^{2}+9 \\
f(x) & =\left(x^{2}-9\right)\left(x^{2}-1\right) \\
f(x) & =(x-3)(x+3)(x-1)(x+1)
\end{aligned}
$$

$\therefore x$-ints are $-\underbrace{-3,-1,1 \text { and } 3}_{\text {all single }}$

$$
\therefore x \in[-3,-1] \cup[1,3]
$$

$$
\text { b) } \begin{gathered}
x^{5}-6 x^{4}+8 x^{3}-2 x^{2}-2>-4 x^{3}+6 x^{2}-2 \\
x^{5}-6 x^{4}+12 x^{3}-8 x^{2}>0
\end{gathered}
$$

Let $f(x)=x^{5}-6 x^{4}+12 x^{3}-8 x^{2}$

$$
\begin{aligned}
& f(x)=x^{2}\left(x^{3}-6 x^{2}+12 x-8\right) \\
& f(x)=x^{2}(x-2)\left(x^{2}-4 x+4\right) \\
& f(x)=x^{2}(x-2)^{3}
\end{aligned}
$$

$\therefore x$-int are 0
double

Compare to $y=x$

$$
\therefore x \in(2,+\infty)
$$

Long divide:

$$
\begin{aligned}
& x x^{2}-4 x+4 \\
& x-2 \sqrt{x^{3}-6 x^{2}+12 x-8} \\
& \frac{x^{3}-2 x^{2}}{-4 x^{2}+12 x} \\
& \frac{-4 x^{2}+8 x}{4 x-8} \\
& \frac{4 x-8}{0}
\end{aligned}
$$

Warmup: Solve the following polynomial inequality graphically.

$$
4 x^{3}+12 x^{2}-3 x-9 \geq 0
$$

Let $f(x)=4 x^{3}+12 x^{2}-3 x-9:$ graph

$$
\begin{aligned}
& f(x)=4 x^{2}(x+3)-3(x+3) \\
& f(x)=(x+3)\left(4 x^{2}-3\right)
\end{aligned}
$$

$$
x \text {-ints: }-3,-\frac{\sqrt{3}}{2},+\frac{\sqrt{3}}{2}
$$

Compare to $y=x$

$$
\begin{aligned}
& \therefore S . S=\left\{x \in \mathbb{R} \left\lvert\,-3 \leq x \leq-\frac{\sqrt{3}}{2}\right., x \geq \frac{\sqrt{3}}{2}\right\} \\
& \text { or I.N.: } x \in\left[-3,-\frac{\sqrt{3}}{2}\right] \cup\left[\frac{\sqrt{3}}{2}, \infty\right)
\end{aligned}
$$

Ex. 1. Solve the following polynomial inequalities using a number line strategy. State your final answer using set notation.
a) $(x+1)(x-2)(x+3)^{2} \leq 0$

Let $f(x)=(x+1)(x-2)(x+3)^{2}$

$$
\therefore S S=\{x \in \mathbb{R} \mid x=-3,-1 \leq x \leq 2\}
$$

x-int: $-1,2,-3$

$$
f(x) \leq 0
$$

$$
\begin{array}{llll}
\Rightarrow(-)(-)(-)^{2} & \Rightarrow(-)(-)(t)^{2} & \Rightarrow(t)(-)(t)^{2} & \Rightarrow(t)(t)(t)^{2} \\
\Rightarrow+ & \Rightarrow t & \Rightarrow- & \Rightarrow t
\end{array}
$$

$$
\Rightarrow-1 \quad \Rightarrow+
$$

b) $2 x^{3}+3 x^{2}>17 x-12$

$$
\begin{aligned}
& 2 x^{3}+3 x^{2}-17 x+12>0 \\
& (x-1)\left(2 x^{2}+5 x-12\right)>0 \\
& (x-1)(2 x-3)(x+4)>0
\end{aligned}
$$

Let $f(x)=(x-1)(2 x-3)(x+4)$
x-ines: $-4,1, \frac{3}{2}$

$$
x-1 \begin{array}{r}
2 x^{2}+5 x-12 \\
\frac{2 x^{3}+3 x^{2}-17 x+12}{2 x^{3}-2 x^{2}} \\
\frac{5 x^{2}-17 x}{2 x^{2}-5 x} \\
\frac{-12 x+12}{}
\end{array}
$$

Ex. 2. Solve the following rational inequalities using a number line strategy. * Never clear State your final answer using interval notation.

$$
\begin{aligned}
& \text { a) } x-2<\frac{8}{x} \\
& \frac{x-2}{1}-\frac{8}{x}<0 \\
& \frac{x^{2}}{x}-\frac{2 x}{x}-\frac{8}{x}<0 \\
& \frac{x^{2}-2 x-8}{x}<0 \\
& \frac{(x-4)(x+2)}{x}<0
\end{aligned}
$$

$$
\text { Let } f(x)=\frac{(x-4)(x+2)}{x}
$$

x-ints: $4,-2$
restrictions: $x \neq 0$

$$
\begin{gathered}
\text { b) } \frac{x+3}{x+1} \geq \frac{x-2}{x-3} \\
\frac{(x-3)(x+3)}{(x-3)}-\frac{(x-2)(x+1)}{(x-3)(x+1)} \geq 0 \\
\frac{\left(x^{2}-9\right)-\left(x^{2}-x-2\right)}{(x+1)(x-3)} \geq 0 \\
\frac{x^{2}-9-x^{2}+x+2}{(x+1)(x-3)} \geq 0 \\
\frac{x-7}{(x+1)(x-3)} \geq 0 \\
\text { Let } f(x)=\frac{x-7}{(x+1)(x-3)}
\end{gathered}
$$

\square

$$
\begin{aligned}
& f(-2) \\
& \Rightarrow \frac{(-)}{(-)(-)}
\end{aligned}
$$

$$
\Rightarrow \frac{(-)}{(+)(t)}
$$

$$
\begin{aligned}
& f(8) \\
\Rightarrow & (+)
\end{aligned}
$$

$$
f(x) \geq 0 \quad \Rightarrow \frac{(-x-)}{x} \quad \Rightarrow+\quad \Rightarrow-\frac{x}{x}
$$

x-int: 7
restrictions: $x \neq-1$

$$
x \neq 3
$$

HW. Exercise 2.9

A rational function is of the form $f(x)=\frac{p(x)}{q(x)}$ and has:
i) a vertical asymptote at $x=a$ if $q(a)=0$ and $p(a) \neq 0$

For the vertical asymptote, set the denominator equal to 0 and solve.
\&
ii) a horizontal asymptote at $y=L$ if $f(x) \rightarrow L$ as $x \rightarrow \pm \infty$ and the degree of $p(x)$ is less than or equal to the degree of $q(x)$ For the horizontal asymptote, divide each term in the function's expanded numerator and denominator by the highest power of x in the denominator and then examine end behaviour.

Ex. 1. Graph the following rational functions by finding and labeling any intercepts, asymptotes and points where the function crosses the horizontal asymptote. Include a table of values for a more accurate graph if appropriate.
a) $f(x)=\frac{2(x-2)(x-1)}{x^{2}-2 x-3}$

$$
f(x)=\frac{2 x^{2}-6 x+4}{x^{2}-2 x-3} / f(x)=\frac{2(x-2)(x-1)}{(x-3)(x+1)}
$$

(1) For x-ints: let $f(x)=0$

$$
\begin{gathered}
\frac{2(x-2)(x-1)}{x^{2}-2 x-3}=0 \\
2(x-2)(x-1)=0 \\
x=1, x=2
\end{gathered}
$$

$\therefore x$-int are 1,2.
(2) For y-int: let $x=0$

$$
f(0)=\frac{2(0)^{2}-6(0)+4}{(0)^{2}-2(0)-3}
$$

$$
f(0)=-\frac{4}{3}
$$

$$
\therefore y \text {-int is }-\frac{4}{3}
$$

(3) For Vertical Asymptotes):
(denominator $\neq 0$)

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=-1, x=3
\end{gathered}
$$

$\therefore V . A$ at $x=-1, x=3$
b) $f(x)=\frac{4}{x^{2}+2} \leftarrow$ degree 0
(1) x-int: no x-ints. For H.A: $f(x)=\frac{4}{x^{2}+2} \div x^{2}$
(2) y-int: $f(0)=2$

$$
y \text {-int is } 2
$$

$$
f(x)=\frac{\frac{4}{x^{2}}}{1+\frac{2}{x^{2}}}
$$

(3) For $V A: x^{2}+2=0$ no solution

$$
\therefore \text { no V.A. }
$$

(5) $f(x)$ does not cross H.A. since $H A$ is $y=0$ (x-ax 15) and no x-hints.
c) $f(x)=\frac{x+2}{x-1} \leftarrow$ degree I
(1) x-int $x=-2$ (b) Does $f(x)$ cross the HA?
(2) y-int: $y=-2$
(3) For $V A: x-1=0$

$$
\therefore V A \text { is } x=1
$$

(4) For HA: $f(x)=\frac{x+2}{x-1} \div x$

$$
f(x)=\frac{1+\frac{2}{x}}{1-\frac{1}{x}}
$$

As $x \rightarrow \pm \infty, f(x) \rightarrow \frac{1+0}{1-0}$ $f(x) \rightarrow 1$
$\because H, A$ is $y=1$
d) $f(x)=\frac{1}{4-x^{2}} \rightarrow f(x)=\frac{1}{(2-x)(2+x)} \leftarrow$ degree 0
(1) x-int: none
(2) $\frac{y \text {-int: } \frac{1}{4}}{1}$
(3) For V.A. $(2-x)(2+x)=0$
$\therefore V, A$. at $x=-2, x=2$
(4) For HA: $f(x)=\frac{1}{4-x^{2}} \div x^{2}$

$$
\begin{gathered}
f(x)=\frac{\frac{1}{x^{2}}}{\frac{4}{x^{2}}-1} \\
\text { As } x \rightarrow \pm \infty, f(x) \rightarrow 0 \\
\therefore H . A \text { at } y=0
\end{gathered}
$$

(5) $f(x)$ does not cross H.A. Since HA. is $y=0(x-a x i s)$ and
no x-int.

(b) | x | $f(x)$ |
| ---: | :--- |
| -3 | $-\frac{1}{5}$ |
| -1 | $\frac{1}{3}$ |
| 1 | $\frac{1}{3}$ |
| 3 | $-\frac{1}{5}$ |

VA $x=1$

A rational function of the form $f(x)=\frac{p(x)}{q(x)}$ has:
i) a vertical asymptote at ${ }_{f(x)=\frac{p(x)}{q(x)}}$ if $f(x)=\frac{p(x)}{q(x)}$ and $q(a)=0$

For the vertical asymptote, set the denominator equal to 0 and solve. \&
ii) a linear oblique asymptote at $y=m x+b$ if $f(x) \rightarrow m x+b$ as $x \rightarrow \pm \infty$ and the degree of $p(x)$ is exactly one more than the degree of $f(x) \rightarrow L$ For the linear oblique asymptote, rewrite the function in mixed rational form using long division and then examine end behaviour.

Ex. 1. Graph the following rational function by finding and labeling any intercepts, asymptotes and points where the function crosses the linear oblique asymptote. Include a table of values for a more accurate graph if appropriate.
a) $f(x)=\frac{9-x^{2}}{x+1} \longleftarrow \operatorname{deg}_{1} 2$

$$
f(x)=\frac{(3-x)(3+x)}{x+1}
$$

(1) x-int are $-3,3$.
(2) y-int is 9
(3) V.A. is $x=-1$
(4) For L.O.A $f(x)=(-x+1)+\frac{8}{x+1}$
$x + 1 \longdiv { - x ^ { 2 } + 0 x + 9 }$
As $x \rightarrow \pm \infty, f(x) \rightarrow-x+1$
$\frac{-x^{2}-x}{x+9}$
\therefore L.O.A is $y=-x+1$
(5) Does $f(x)$ cross
the L.OA?

$$
\frac{9-x^{2}}{x+1}=\frac{-x+1}{1}
$$

$$
9-x^{2}=(-x+1)(x+1)
$$

$$
9-x^{2}=1-x^{2}
$$

$$
0=-8
$$

\therefore does not cross.

c) $f(x)=\frac{x^{2}+x+1}{x} \leftarrow \operatorname{deg}^{2}$
(1) x-int: $x^{2}+x+1=0$

$$
\begin{array}{rl}
x & x-\frac{1 \pm \sqrt{i}}{2} \\
\therefore \text { no } & =-\frac{i n t s}{2}
\end{array}
$$

(2) y-int $f(0)$ is undefined
\therefore no y-ints
(3) V.A. is $x=0$
(4) For L.O.A.

$$
\begin{aligned}
f(x) & =\frac{x^{2}+x+1}{x} \\
& =(x+1)+\frac{1}{x}
\end{aligned}
$$

(b) $x |$| $x(x)$ | |
| :--- | :--- |
| -1 | -1 |
| 1 | 3 |

As $x \rightarrow \pm \infty, f(x) \rightarrow x+1$

$$
\therefore \text { L.O.A is } y=x+1
$$

(5) Does $f(x)$ cross the L.OA?

$$
\begin{aligned}
\frac{x^{2}+x+1}{x} & =\frac{x+1}{1} \\
x^{2}+x+1 & =x^{2}+x \\
1 & =0
\end{aligned}
$$

\therefore does not cross.
d) $f(x)=\frac{x^{3}}{x^{2}-4} / f(x)=\frac{x^{3}}{(x-2)(x+2)}$
(1) x-int is 0 (triple)
(2) y-int is 0
(3) V.A. are $x=-2, x=2$
(6)

$$
\begin{array}{l|l}
\text { (4) For L.O.A. } & f(x)=\frac{x^{3}}{x^{2}-4} \\
x^{2}+0 x-4 \sqrt{x^{3}+0 x^{2}+0 x+0} & f(x)=x+ \\
\frac{x^{3}+0 x^{2}-4 x}{0 x^{2}+4 x+0} & f(x)=x+. \\
& A s x \rightarrow \pm \infty
\end{array}
$$

(5) Does $f(x)$ cross the L.O.A?

$$
\begin{aligned}
\frac{x^{3}}{x^{2}-4} & =\frac{x}{1} \\
x^{3} & =x^{3}-4 x \\
4 x & =0 \quad \because f(x) \text { crosses } \\
x & =0 \quad \text { the L.OA A }(0,0)
\end{aligned}
$$

x	$f(x)$
1	$-\frac{1}{3}$
-1	$\frac{1}{3}$
-3	$-5 \frac{2}{5}$
3	$5 \frac{2}{5}$

