Ex. 1. Use the graphs of the following functions to state when i) f(x) > 0 ii) f(x) < 0Answer using *algebraic notation*.

Ex. 2. Solve each of the following graphically where, $x \in R$. Answer using a *solution set*. **a)** $x^2 - 3x - 10 \ge 0$

Ex. 3. Solve each of the following graphically where, $x \in R$. Answer using *interval notation*. a) $x^4 - 10x^2 + 9 \le 0$

$$∘$$
 $x ∈ [-3, -1] ∪ [1, 3]$

b)
$$x^{5}-6x^{4}+8x^{3}-2x^{2}-2 > -4x^{3}+6x^{2}-2$$

 $\chi^{5}-6\chi^{4}+12x^{3}-8\chi^{2} > 0$
Let $f(x) = x^{5}-6\chi^{4}+12x^{3}-8\chi^{2}$
 $f(x) = \chi^{2}(\chi^{3}-6\chi^{2}+12\chi-8) * * *$
 $f(x) = \chi^{2}(\chi-2)\chi^{2}-4\chi+4)$
 $f(x) = \chi^{2}(\chi-2)^{3}$
 $\therefore \chi - ints are 0 and 2
double 2 +triple
Compose
to $y = \chi$
 $\xi = \chi \in (2, +\infty)$$

8

$$\frac{\text{Long divide}:}{x^2 - \frac{4x + 4}{x - 2}} \xrightarrow{x^2 - \frac{4x + 4}{x - 2}} \xrightarrow{x^2 - \frac{4x + 4}{x - 8}} \xrightarrow{x^3 - 2x^2} \xrightarrow{-\frac{x^3 - 2x^2}{-\frac{4x^2 + 12x}{x - 8}}} \xrightarrow{-\frac{4x^2 + 8x}{4x - 8}} \xrightarrow{-\frac{4x - 8}{4x - 8}}$$

HW. Exercise 2.8

2.9 Solving Polynomial & Rational Inequalities Using a Number Line Strategy

Warmup: Solve the following polynomial inequality graphically.

Ex. 1. Solve the following polynomial inequalities using a *number line strategy*. State your final answer using *set notation*.

a)
$$(x+1)(x-2)(x+3)^2 \le 0$$

Let $f(x) = (x+1)(x-2)(x+3)^2$
 $x - int: -1, 2, -3$

$$f(-4) = 3 \quad f(-2) = 1 \quad f(0) = 2 \quad f(3)$$

$$\Rightarrow (-(-(-))^{2} \quad \Rightarrow (-(-))^{(+)^{2}} \quad \Rightarrow (+(-)(+)^{2} \quad = 3(+)(+)(+)(+)^{2}$$

$$\Rightarrow + \qquad = 3 \quad = 3 \quad$$

$$\begin{aligned} & \chi + 5\chi - [4\chi + 12) > 0 \\ & (\chi - 1)(2\chi^{2} + 5\chi - 12) > 0 \\ & (\pi - 1)(2\chi - 3)(\chi + 4) > 0 \\ & \text{Let f}(\chi) = (\chi - 1)(2\chi - 3)(\chi + 4) \\ & \chi - ints: -4, 1, \frac{3}{2} \end{aligned}$$

$$\begin{array}{r} 2x^{2} + 5x - 12 \\ \chi - 1) 2x^{3} + 3x^{2} - 17 \chi + 12 \\ \underline{2x^{3} - 2x^{2}} \\ 5x^{2} - 17x \\ \underline{5x^{2} - 5x} \\ -(2x + 12 \\ \underline{-12x + 12} \\ 0 \end{array}$$

 $5.55 = \{x \in \mathbb{R} \mid x = -3, -1 \le x \le 2\}$

$$5S = \{x \in \mathbb{R} | -4 < x < 1, x > \frac{3}{2}\}$$

Ex. 2. Solve the following *rational inequalities* using a *number line strategy*. * Never clear State your final answer using *interval notation*.

a)
$$x-2 < \frac{8}{x}$$

$$\frac{\chi^{-2} - \frac{8}{\chi} \angle 0}{T - \frac{1}{1}} \frac{2\chi}{\chi} \angle 0$$

$$\frac{\chi^{2}}{\chi} - \frac{2\chi}{\chi} - \frac{8}{\chi} \angle 0$$

$$\frac{\chi^{2} - 2\chi - 8}{\chi} - \frac{8}{\chi} \angle 0$$

$$\frac{\chi^{2} - 2\chi - 8}{\chi} \angle 0$$

b)
$$\frac{x+3}{x+1} \ge \frac{x-2}{x-3}$$

 $(x-3)(x+3) = (x-2)(x+1) = (x-3)(x+1) = (x-3)(x+1) = (x-3)(x+1) = (x-3)(x+1) = (x-3)(x+1)(x-3) = 20)$
 $\frac{x^2-9-x^2+x+2}{(x+1)(x-3)} \ge 0$
 $\frac{x^2-9-x^2+x+2}{(x+1)(x-3)} \ge 0$
Let $f(x) = \frac{x-7}{(x+1)(x-3)} \ge 0$
 $x-int: 7$
 $x-int: 7$
 $x = trictions: x = -1$
 $x \neq 3$

$$\sum_{n=1}^{\infty} \chi \in (-1, 2) \cup [-1, +2)$$

HW. Exercise 2.9

- A *rational* function is of the form $f(x) = \frac{p(x)}{q(x)}$ and has: i) a *vertical asymptote* at x = a if q(a) = 0 and $p(a) \neq 0$ For the *vertical asymptote*, set the denominator equal to 0 and solve. & ii) a *horizontal asymptote* at y = L if $f(x) \rightarrow L$ as $x \rightarrow \pm \infty$ and the degree of p(x) is less than or equal to the degree of q(x)For the *horizontal asymptote*, divide each term in the function's *expanded* numerator and denominator by the highest power of x in the denominator and then examine end behaviour.
- **Ex. 1.** Graph the following rational functions by finding and labeling any intercepts, asymptotes and points where the function crosses the horizontal asymptote. Include a table of values for a more accurate graph if appropriate 14.

	(1) For Horizontal theymptote.		
a) $f(x) = \frac{2(x-2)(x-1)}{x}$		(end belogstions)	$(\infty \pm \sqrt{-1} \pm \infty)$
$x^2 - 2x - 3$		$r \rightarrow 2x^2 - 6x + 1$	$+$ $+$ π^{2}
$C_{1} = 2x^{2} - 6x + 4/c$	2(x-2)(x-1)	$f(x) = \frac{2x}{x^2 - 2x - 3}$	$\dot{=}$ $\dot{=}$ χ^2
$f(x) = \frac{x^2 - x^2}{x^2 - x^2} / f(x)$	$\frac{1}{(\gamma - 2\gamma + 1)}$	6.4	
$\chi = 2\chi = 3$		$f(x) = \frac{2 - x + x^2}{x^2 + x^2}$	_
() Er = v-ints: lot f(x)=0		「一気一気	$a = 0 \pm 0$
	(E) Does for (re	$\Delta = \gamma \rightarrow \pm \infty$, for	$() \rightarrow \frac{2}{1-0-0}$
2(x-2)(x-1)	JUDES 10,1 C.		
x2-2x-31 >1	$\frac{1}{1} \int f(x) - 7$	-	$-(x) \rightarrow \lambda$
$\gamma(x, y y-1) = 0$	Let 11x1-2	· H.A. 15	$u = \partial$
$\mathcal{L}(\mathcal{X} = \mathcal{L}(\mathcal{X} \land \mathcal{Y}) = \mathcal{O}$	2x2-6x+4 172		
$\chi = 1, \chi = 2$	x2-2x-3631		č
* x-ints are 1,2.	21	$\forall \alpha = 0$	
	$2x^{2}-6x+4=2x^{2}$	I A C	V.A.
⊕ For y-int: let x=0	$-2\chi = -10$	~=-1	x=3
0 $f(0) = 2(0)^2 - 6(0) + 4$	$\chi = 5$		
101-200-3	: crosses at (5,2)	1
$f(x) = -\frac{\mu}{2}$	(D) (If(x))		Å
1(0) - 3 4	6 7 TINI		
e y-ind is -3	-2 24		
	-3 10		
(3) For Vertical Asymptotes):	3		
	4 5) 1 -	
(denominator ZU)			(2,0)
$\chi = 2\chi - 3 = 0$			
(x-3(x+1)=0			
x=-1 x=3			
". V.A. at x=-1, x=>			
		, ₽	

HW. Exercise 2.10

A *rational* function of the form f(x) = p(x)/q(x) has:
i) a *vertical asymptote* at f(x) = p(x)/q(x) if f(x) = p(x)/q(x) and q(a) = 0 For the *vertical asymptote*, set the denominator equal to 0 and solve. &
ii) a *linear oblique asymptote* at y = mx+b if f(x) → mx+b as x → ±∞ and the degree of p(x) is exactly one more than the degree of f(x) → L For the *linear oblique asymptote*, rewrite the function in mixed rational form using long division and then examine end behaviour.

Ex. 1. Graph the following rational function by finding and labeling any intercepts, asymptotes and points where the function crosses the linear oblique asymptote. Include a table of values for a more accurate graph if appropriate.

e)
$$f(x) = \frac{x^2 + x + 1}{x} = -\frac{d dy}{2}$$

 $x = -\frac{d dy}{2}$
 $y = -\frac{d d d d}{2}$
 $y =$

Exercise 2.11 **v**.