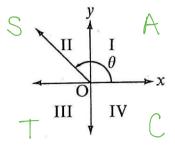
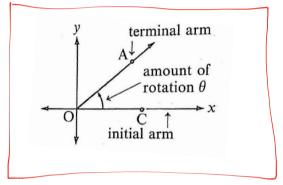
UNIT 3: TRIGONOMETRIC FUNCTIONS AND EQUATIONS

The Definitions of Trigonometry

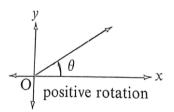
The Cartesian plane is fundamental in the study of trigonometry. Angles are related to the co-ordinate axes and associated with rotation. The xy plane is divide into four quadrants numbered, for convenience as shown.



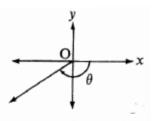
An angle is in **standard position** if its vertex is at the origin in the xy plane, its initial arm is on the positive x-axis, and its terminal arm is a rotation of the initial arm about the origin.



If the rotation is counterclockwise, the angle has **positive** measure. The rotation is usually indicated by a directed arrow starting from the positive x-axis.

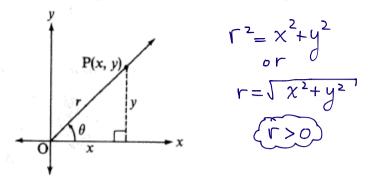


If the rotation is clockwise, the angle has **negative** measure.



negative rotation

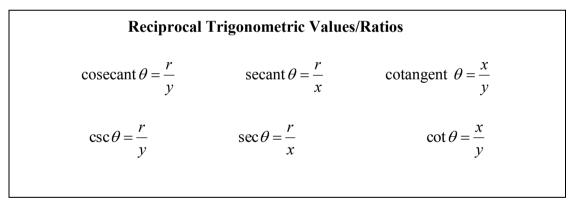
If P(x, y) is a point on the terminal arm of an angle θ , a circle with centre the origin can be drawn through P(x, y) with the following radius:



The following definitions the form the basis of trigonometry.

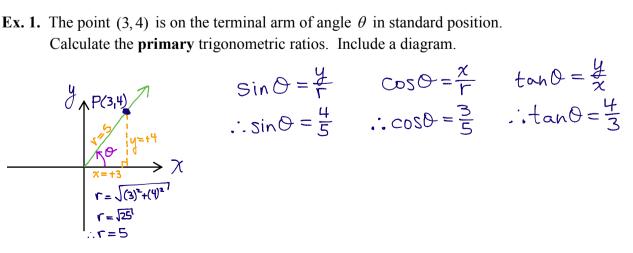
Primary Trigonometric Values/Ratios			
	tangent $\theta = \frac{y}{x}$	$\operatorname{cosine} \theta = \frac{x}{r}$	sine $\theta = \frac{y}{r}$
	$\tan\theta = \frac{y}{x}$	$\cos\theta = \frac{x}{r}$	$\sin\theta = \frac{y}{r}$

By writing the reciprocals of the above, other trigonometric values are defined.



To calculate the trigonometric values you only need to find a point on the terminal arm.

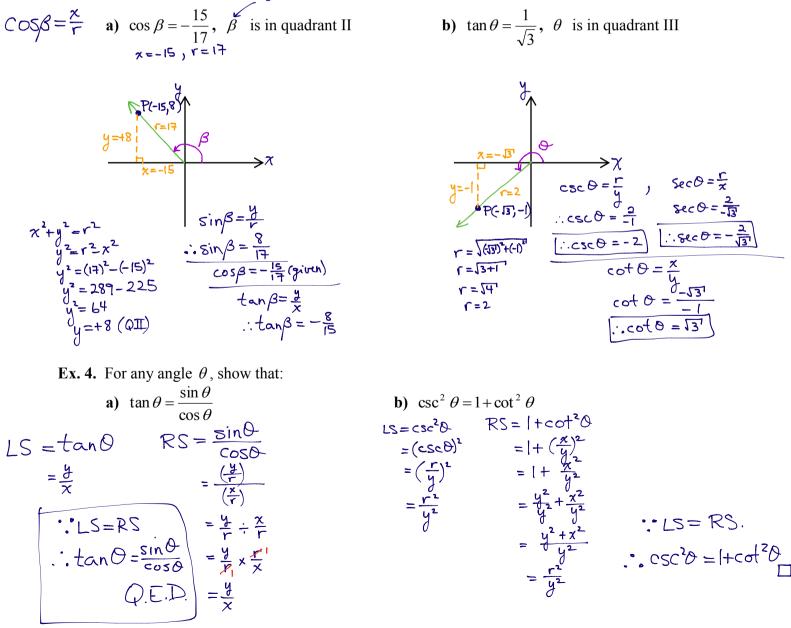
Ex. 1. The point (3, 4) is on the terminal arm of angle θ in standard position. Calculate the **primary** trigonometric ratios. Include a diagram.



Ex. 2. P(4, -4) is a point on the terminal arm of angle α in standard position. Calculate the **reciprocal** trigonometric values. Include a diagram.

 $csc \propto = \frac{r}{y}, sec \propto = \frac{r}{\chi}, cot \propto = \frac{x}{y}$ $csc \propto = \frac{4\sqrt{2}}{-4}, sec \propto = \frac{4\sqrt{2}}{4}, cot \propto = \frac{4}{-4}$ $csc \propto = -\sqrt{2}, \therefore sec \propto = \sqrt{2}, \therefore cot \propto = -1$ P(4, -4)Y1 $r = \sqrt{(4)^2 + (-4)^2}$ $V = \int 32^{1}$:r=452

Ex. 3. Draw a sketch of each angle in standard position. Calculate the primary trigonometric ratios for a) and the reciprocal trigonometric ratios for b).

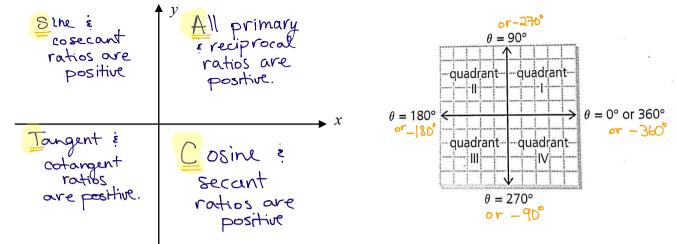


HW. Worksheet on the Definitions of Trigonometry #1 cf, 2 ab, 3, 4, 7, 8, 10, 11, 12 de

MHF 4UI Unit 3: Day 2
Date:
$$OCt 21/14$$

ANGLES AND QUADRANTS

Recall: The CAST rule



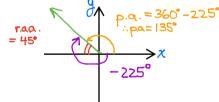
Definitions:

Coterminal angles share the same terminal arm and the same initial arm.

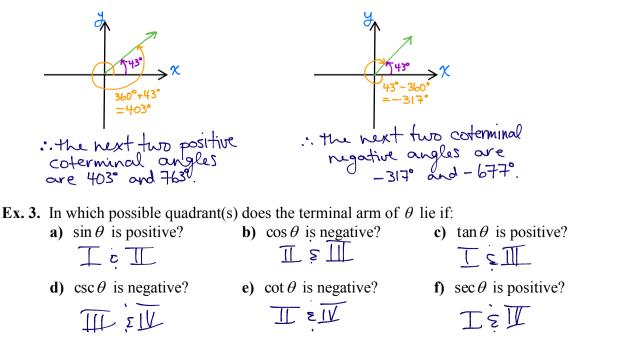
The principal angle is the angle between 0° and 360° . $(\mathbf{P}, \mathbf{Q}, \mathbf{Q})$

The **related acute angle** is the angle formed by the terminal arm of an angle in standard position and the x-axis. The related acute angle is <u>always positive</u> and lies <u>between 0° and 90°</u>. (QI) V, Q, Q.

Ex. 1. Determine the principal angle and the related acute angle for $\theta = -225^{\circ}$.



Ex. 2. Determine the next two positive and negative coterminal angles for 43° .

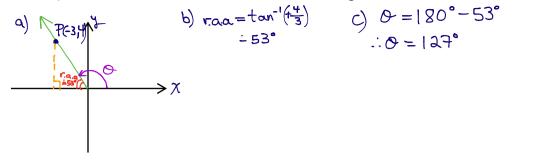


TIL J

IV

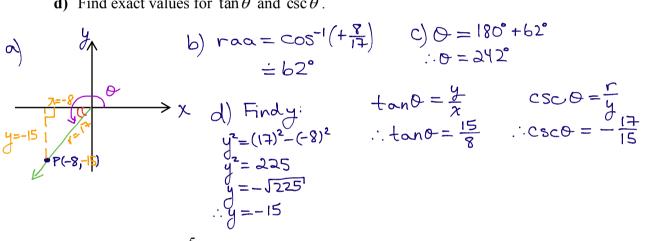
Ex. 4. Point P(-3, 4) is on the terminal arm of an angle in standard position.

- a) Sketch the principal angle, θ .
- **b**) Determine the value of the related acute angle to the nearest degree.
- c) What is the measure of θ to the nearest degree?



Ex. 5. A positive angle θ is in the third quadrant and $\sec \theta = -\frac{17}{8}$. $\cos \theta = -\frac{g}{17} \int_{x=-8}^{x=-8} e^{-\frac{17}{8}}$

- a) Sketch the principal angle, θ .
- b) Determine the value of the related acute angle to the nearest degree.
- c) What is the measure of θ to the nearest degree?
- **d)** Find exact values for $\tan \theta$ and $\csc \theta$.

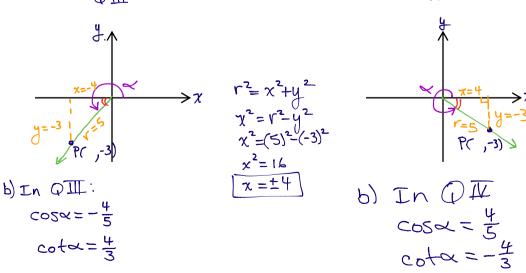


QIV

b, d, f,

Ex. 6. Given that $\csc \alpha = -\frac{5}{2}$ and $0^{\circ} \le \alpha \le 360^{\circ}$,

- a) Find α . (Include diagrams)
- **b)** Determine exact values for $\cos \alpha$ and $\cot \alpha$. QIII



HW. Worksheet on Angles and Quadrants Part A #1, 2, 5, 6, & 8 even parts; 9, 12; Part B #7, 8, 9

MHF 4UI Unit 3: Day3 Date:_Oc+ 22

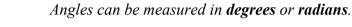
RADIAN MEASURE

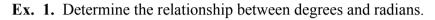
A **radian** is the measure of the angle subtended at the center of the circle by an arc equal in length to the radius of the circle.

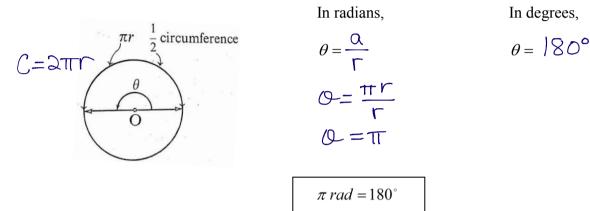
k

$$\theta_{in\,radians} = \frac{arc\,length}{radius}$$
 or $\theta = \frac{a}{r}$ or $a = r\theta$

 $r\theta$ The measure of θ is defined to be 1 radian.







Ex. 2. Change each radian measure to degree measure. Round to the nearest degree, if necessary. *Hint:* $\pi rad = 180^{\circ} \text{ or } 1 rad = \frac{180^{\circ}}{\pi}^{\circ}$: *To change radian measure to degree measure, multiply the number of radians by* $\frac{180^{\circ}}{\pi}^{\circ}$.

a)
$$\frac{\pi}{6}$$

 $=\frac{\pi}{6} \cdot \frac{180^{\circ}}{\pi}$
 $= 30^{\circ}$
b) $\frac{5\pi}{4}$
c) $-\frac{3\pi}{2}$
d) 2.2
 $=-\frac{3\pi}{2} \cdot \frac{180^{\circ}}{\pi}$
 $=-\frac{3\pi}{2} \cdot \frac{180^{\circ}}{\pi}$
 $=-2.2 \times \frac{180^{\circ}}{\pi}$
 $=-2.70^{\circ}$

Ex. 3. Find the exact radian measure, in terms of π , for each of the following.

Hint: $180^{\circ} = \pi \, rad \, or \, 1^{\circ} = \frac{\pi}{180} \, rad$: To change degree measure to radian measure, multiply the number of degrees by $\frac{\pi}{180} \, rad$.

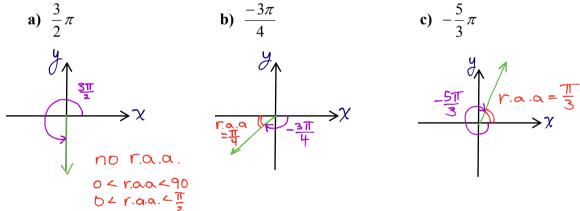
a)
$$45^{\circ}$$
, b) 60° c) -210° d) -720° -720° $= -720^{\circ}$ $= -7$

Ex. 4. Change each degree measure to radian measure, to 4 decimal places.

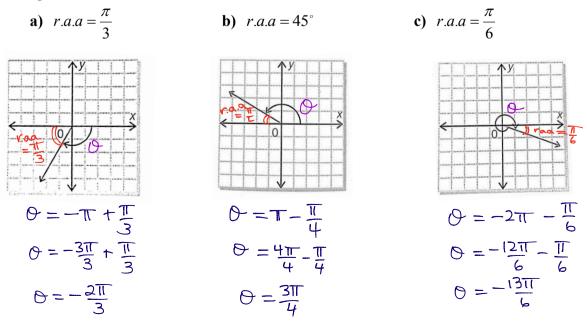
a)
$$30^{\circ}$$

 $= 30^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= \frac{\pi}{6}$
 $= 0.5236$
b) -230°
 $= -230^{\circ} \cdot \frac{\pi}{180^{\circ}}$
 $= -\frac{23\pi}{18}$
 $= -\frac{23\pi}{18}$

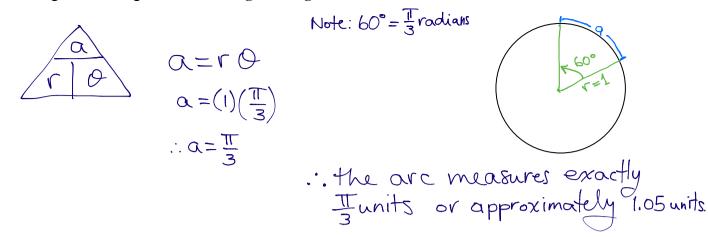
Ex. 5. Sketch each angle in standard position.



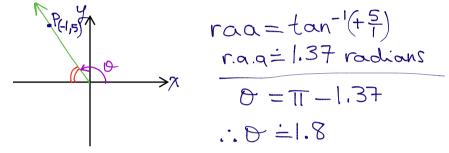
Ex. 6. Write the value of θ in exact radian measure with the given related acute angle for the following:



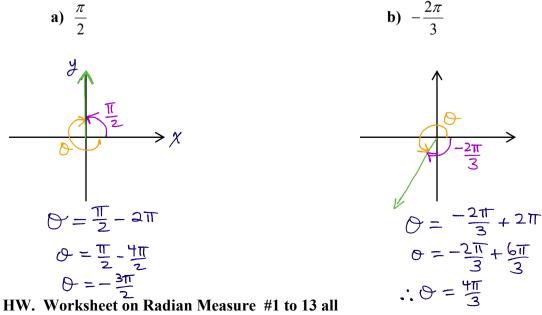
Ex. 7. Sector angles are drawn in a unit circle. Find the measure of the arc of the circle that subtends an angle measuring 60° . Label the given diagram.

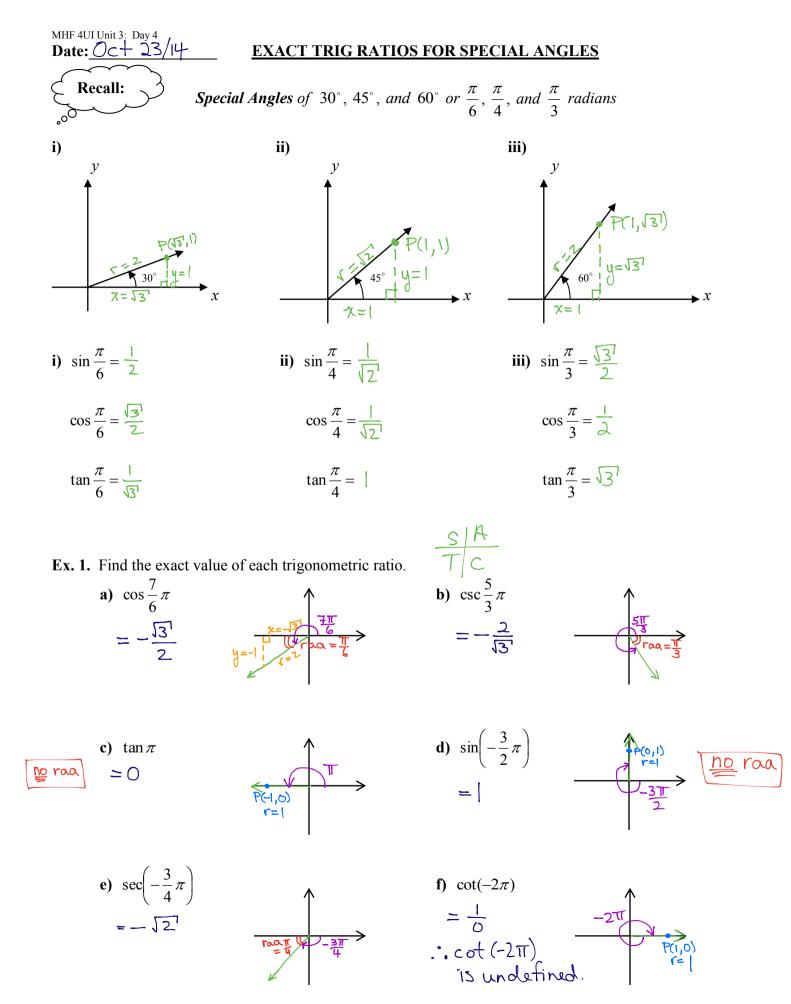


Ex. 8. P(-1,5) is a point on the terminal arm of angle θ in standard position. Calculate the measure of the principal angle in radians to 1 decimal place. Include a diagram.

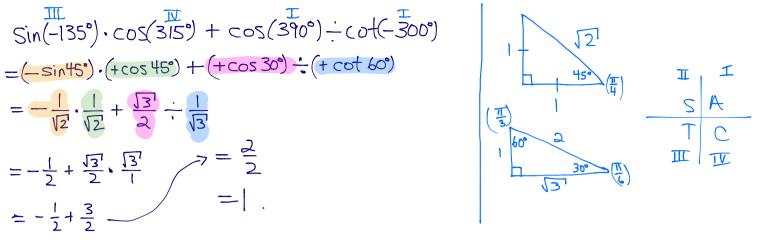


Ex. 9. The radian measures of angles are shown. Write the measure of the *coterminal angle* θ for $-2\pi \leq \theta \leq 2\pi$. Include a diagram.

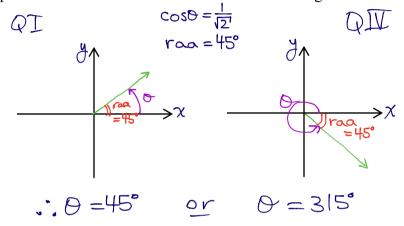




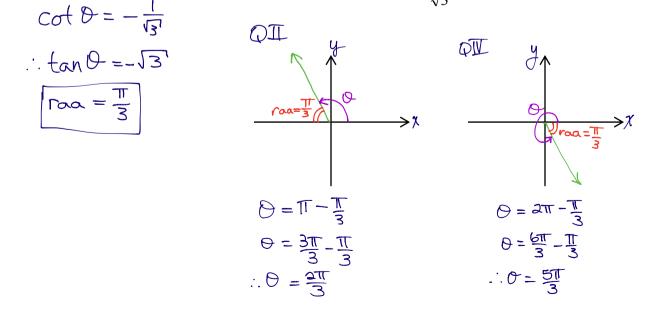
Ex. 2. Calculate the exact value of $\sin(-135^\circ) \cdot \cos 315^\circ + \cos 390^\circ \div \cot(-300^\circ)$.



Ex. 3. If $0^{\circ} \le \theta \le 360^{\circ}$, find possible values of θ for $\sec \theta = \sqrt{2}$. Include diagrams.



Ex. 4. If $0 \le \theta \le 2\pi$, find possible values of θ for $\cot \theta = -\frac{1}{\sqrt{3}}$. Include diagrams.



HW. Worksheet on Exact Trig Ratios for Special Angles #5 to 13 all