Warmup

1. Given θ is an acute angle, express each quantity in terms of either $\sin \theta, \cos \theta$ or $\tan \theta$.
a) $\sin (-\theta)$
b) $\cos (-\theta)$
c) $\tan (-\theta)$
$=-\sin \theta$
$=+\cos \theta$
$=-\tan \theta$
2. Given the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, express:
a) $\sin ^{2} \theta$ in terms of $\cos ^{2} \theta$
b) $\cos ^{2} \theta$ in terms of $\sin ^{2} \theta$
$\sin ^{2} \theta=1-\cos ^{2} \theta$
$\cos ^{2} \theta=1-\sin ^{2} \theta$

Example 1.

Develop the addition formula for sine, ie. $\sin (a+b)$, in terms of angles a and b using the given diagram.
In $\triangle T U P,<T U P=\frac{\pi}{2}-a$ and in $\triangle R U Q,<R U Q=\pi-\left(\frac{\pi}{2}-a\right)-\frac{\pi}{2}$
In $\triangle T R S, \quad \sin (a+b)=\frac{R S}{1}$
$=\frac{\pi}{2}-\left(\frac{\pi}{2}-a\right)$
$\sin (a+b)=R S$
$\sin (a+b)=Q P$
$\sin (a+b)=U P+Q U$

$$
=a
$$

In $\triangle T R U$,

$$
\begin{aligned}
& \because \sin (a+b)=U P+Q U \\
& \therefore \sin (a+b)=\sin a \cos b+\sin b \cos a
\end{aligned}
$$

Note:

By following a similar strategy and using the fact that $T S=T P-S P$, the following addition formula for cosine can be determined.
$\cos (a+b)=\cos a \cos b-\sin a \sin b$

$$
\begin{gathered}
\sin (A+B)=\sin A \cos B+\cos A \sin B \\
\& \\
\cos (A+B)=\cos A \cos B-\sin A \sin B
\end{gathered}
$$

Warm-up

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=+\cos \theta \\
& \tan (-\theta)=-\tan \theta
\end{aligned} \quad, \begin{aligned}
& \theta \text { is } \\
& \text { a cute. }
\end{aligned}
$$

Ex. 2. Using the addition formulas for sine and cosine, develop the subtraction formulas, $\sin (A-B)$ and $\cos (A-B)$.

$$
\begin{aligned}
& \sin (A-B) \\
&= \sin [A+(-B)] \\
&= \sin A \cos (-B)+\sin (-B) \cos A \\
&= \sin A \cos B-\sin B \cos A \\
& \therefore \sin (A-B)=\sin A \cos B-\sin B \cos A
\end{aligned}
$$

$$
\begin{aligned}
& \cos (A-B) \\
= & \cos [A+(-B)] \\
= & \cos A \cos (-B)-\sin A \sin (-B) \\
= & \cos A \cos B+\sin A \sin B \\
& \therefore \cos (A-B)=\cos A \cos B+\sin A \sin B
\end{aligned}
$$

Ex. 3. Using the addition formulas for sine and cosine, develop the double-angle formulas, $\sin 2 A$ and $\cos 2 A$.

$$
\sin 2 A
$$

$$
=\sin (A+A)
$$

$$
=\sin A \cos A+\sin A \cos A
$$

$$
=2 \sin A \cos A
$$

$$
\therefore \sin 2 A=2 \sin A \cos A
$$

$$
\begin{aligned}
& \cos 2 A \\
= & \cos (A+A) \\
= & \cos A \cos A-\sin A \sin A \\
= & \cos ^{2} A-\sin ^{2} A \\
\therefore & \cos 2 A=\cos ^{2} A-\sin ^{2} A
\end{aligned}
$$

In terms of $\sin ^{2} A$:

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =\left(1-\sin ^{2} A\right)-\sin ^{2} A \\
& =1-2 \sin ^{2} A \\
\therefore \cos 2 A & =1-2 \sin ^{2} A
\end{aligned}
$$

In terms of $\cos ^{2} A$

$$
\begin{aligned}
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =\cos ^{2} A-1+\cos ^{2} A \\
& =2 \cos ^{2} A-1 \\
\therefore \cos 2 A & =2 \cos ^{2} A-1
\end{aligned}
$$

Ex. 4. Using the addition formulas for sine and cosine, develop the addition and subtraction formulas for tangent, $\tan (A+B)$ and $\tan (A-B)$. Also develop the double-angle formula, $\tan 2 A$.

$$
\begin{aligned}
& \tan (A+B) \\
&= \frac{\sin (A+B)}{\cos (A+B)} \\
&= \frac{\sin A \cos B+\sin B \cos A}{\cos A \cos B-\sin A \sin B} \div \frac{\cos A \cos B}{\cos A \cos B} \\
&= \frac{\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}}{\frac{\cos B}{\cos B}-\frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}} \\
&= \frac{\tan A+\tan B}{1-\tan A \cdot \tan B} \\
& \therefore \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{aligned}
$$

$$
\begin{aligned}
& \tan (A-B) \\
= & \tan [A+(-B)] \\
= & \frac{\tan A+\tan (-B)}{1-\tan A \tan (-B)} \\
= & \frac{\tan A-\tan B}{1+\tan A \tan B} \\
\therefore & \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

$$
\begin{aligned}
& \tan 2 A \\
= & \tan (A+A) \\
= & \frac{\tan A+\tan A}{1-\tan A \tan A} \\
= & \frac{2 \tan A}{1-\tan ^{2} A} \\
& \therefore \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Key Concepts for Compound Angle Formulas

- Addition, subtraction and double-angle identities for sine, cosine, and tangent

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\sin B \cos A \\
\sin (A-B) & =\sin A \cos B-\sin B \cos A \\
\sin 2 A & =2 \sin A \cos A \\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A \\
\tan (A+B) & =\frac{\tan A+\tan B}{1-\tan A \tan B} \\
\tan (A-B) & =\frac{\tan A-\tan B}{1+\tan A \tan B} \\
\tan 2 A & =\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

HW. Memorize these identities.

1. Given θ is an acute angle, express each quantity in terms of either $\sin \theta$ or $\cos \theta$ using an appropriate compound angle identity.

a) $\sin \left(\theta+\frac{3 \pi}{2}\right) \quad \sin (A+B)$
b) $\cos (\pi+\theta)$
$=\sin \theta \cos \frac{3 \pi}{2}+\sin \frac{3 \pi}{2} \cos \theta$
$=\sin \theta(0)+(-1) \cos \theta$
$=-\cos \theta$
$\therefore \sin \left(\theta+\frac{3 \pi}{2}\right)=-\cos \theta$
c) $\cos \left(\frac{\pi}{2}-\theta\right) \quad \cos (A-B)$
$=\cos \frac{\pi}{2} \cos \theta+\sin \frac{\pi}{2} \sin \theta$
$=(0) \cos \theta+(1) \sin \theta$
$V \square \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
2. Use an appropriate compound angle identity to determine an exact value for $\tan 15^{\circ}$.

$$
\begin{aligned}
& \tan 15^{\circ} \\
&= \tan \left(45^{\circ}-30^{\circ}\right) \\
&= \frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \\
&= \frac{1-\frac{1}{\sqrt{3}}}{1+(1)\left(\frac{1}{3}\right)} \\
&= \frac{1-\frac{\sqrt{3}}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} \\
&==\frac{3-2 \sqrt{3}+1}{3-1} \\
& \therefore \tan 15^{\circ}=2-\sqrt{3} \\
& \therefore
\end{aligned}
$$

Ex. 1. Find the exact value of each of the following.

$$
\begin{aligned}
& \text { a) } \sin 15^{\circ} \\
& =\sin \left(60^{\circ}-45^{\circ}\right) \\
& =\sin 60^{\circ} \cos 45^{\circ}-\sin 45^{\circ} \cos 60^{\circ} \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{6}-\sqrt{2}}{4} \\
& \text { b) } \cos \frac{7 \pi}{12} \\
& =\cos \left(\frac{4 \pi}{12}+\frac{3 \pi}{12}\right) \\
& =\cos \left(\frac{\pi}{3}+\frac{\pi}{4}\right) \\
& =\cos \frac{\pi}{3} \cos \frac{\pi}{4}-\sin \frac{\pi}{3} \sin \frac{\pi}{4} \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)-\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{1-\sqrt{3}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}-\sqrt{6}}{4} \\
& \text { c) } \tan \frac{19 \pi}{12} \\
& =\tan \left(\frac{16 \pi}{12}+\frac{3 \pi}{12}\right) \\
& =\tan \left(\frac{4 \pi}{3}+\frac{\pi}{4}\right) \\
& =\frac{\tan \frac{4 \pi}{3}+\tan \frac{\pi}{4}}{1-\tan \frac{4 \pi}{3} \tan \frac{\pi}{4}} \\
& =\frac{\sqrt{3}+1}{1-(\sqrt{3})(1)} \\
& =\frac{1+\sqrt{3}}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}} \\
& =\frac{1+2 \sqrt{3}+3}{1-3} \\
& =\frac{4+2 \sqrt{3}}{-2} \\
& =-2-\sqrt{3}
\end{aligned}
$$

Ex. 2. Express $\tan \left(\frac{\pi}{4}-x\right)$ in terms of $\tan x$.

$$
\begin{aligned}
& \tan \left(\frac{\pi}{4}-x\right) \\
= & \frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x} \\
= & \frac{1-\tan x}{1+\tan x}
\end{aligned}
$$

Ex. 3. If $\sin \theta=\frac{5}{8}$ and $\sin \beta=\frac{4}{5}$ where θ and β are both acute angles, find an exact value for

$$
\begin{aligned}
& \cos (\theta+\beta)-\cos (\theta-\beta) \\
= & (\cos \theta \cos \beta-\sin \theta \sin \beta)-(\cos \theta \cos \beta+\sin \theta \sin \beta) \\
= & \cos \theta \cos \beta-\sin \theta \sin \beta-\cos \theta \cos \beta-\sin \theta \sin \beta \\
= & -2 \sin \theta \sin \beta \\
= & -2\left(\frac{15}{8}\right)\left(\frac{4}{58}\right) \\
= & -1
\end{aligned}
$$

Ex. 4. If $\tan A=-\frac{1}{2}$, and A lies in the interval $\frac{\pi}{2} \leq \frac{\mathbb{I}}{} \leq \pi$, determine the following:
a) exact values for i) $\sin 2 A$ ii) $\cos 2 A$ iii) $\cos 4 A$
b) the quadrant in which angle $2 A$ lies

$$
\text { b) } \frac{\pi}{2} \leq A \leq \pi
$$

$\times 2)$
ii) $\cos 2 A$

$$
=\cos ^{2} A-\sin ^{2} A
$$

$$
\begin{aligned}
& \pi \leq 2 A \leqslant 2 \pi \text { (QIII or QII) } \\
& \because \cos 2 A=+\frac{3}{5} \dot{\varepsilon} \sin 2 A=-\frac{4}{5} \\
& \quad \therefore \text { Angle } 2 A \text { lies in } Q \mathbb{I} .
\end{aligned}
$$

$$
=\left(\frac{-2}{\sqrt{5}}\right)^{2}-\left(\frac{1}{\sqrt{5}}\right)^{2}
$$

$$
=\frac{4}{5}-\frac{1}{5}
$$

$$
\therefore \cos 2 A=\frac{3}{5}
$$

$$
\text { (ii) } \begin{aligned}
& \cos 4 A \\
= & \cos [2(2 A)] \\
= & \cos ^{2}(2 A)-\sin ^{2}(2 A) \\
= & \left(\frac{3}{5}\right)^{2}-\left(\frac{-4}{5}\right)^{2} \\
= & \frac{9}{25}-\frac{16}{25} \\
= & -\frac{7}{25}
\end{aligned}
$$

Ex. 1. Express as a single trigonometric function, and then evaluate.
a) $\cos 45^{\circ} \cos 15^{\circ}-\sin 45^{\circ} \sin 15^{\circ}$
$=\cos \left(45^{\circ}+15^{\circ}\right)$
b) $\frac{\tan \frac{\pi}{12}+\tan \frac{\pi}{6}}{1-\tan \frac{\pi}{12} \tan \frac{\pi}{6}}$
c) $1-2 \sin ^{2}\left(\frac{5 \pi}{8}\right)$
$=\tan \left(\frac{\pi}{12}+\frac{\pi}{6}\right)$
$=\cos \left[\frac{2}{1}\left(\frac{5 \pi}{8}\right)\right]$
$=\cos 60^{\circ}$
$=\frac{1}{2}$
$=\tan \left(\frac{3 \pi}{12}\right)$
$=\tan \left(\frac{\pi}{4}\right)$
$=1$
$=\cos \left(\frac{5 \pi}{4}\right) \quad r a a=\frac{\pi}{4}$
$=-\frac{1}{\sqrt{2}}$

Ex. 2. Express as a single sine or cosine function.
a) $40 \sin x \cos x$
b) $\cos ^{2} 3 x-\sin ^{2} 3 x$
$=\cos [2(3 x)]$
$=\cos 6 x$
c) $8 \sin \frac{x}{2} \cos \frac{x}{2}$
$=4\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)$
$=4 \sin \left[2\left(\frac{x}{2}\right)\right]$
$=4 \sin x$
QI

Ex. 3. If θ is in the interval $\left[\frac{3 \pi}{2}, 2 \pi\right], \alpha$ is in the interval $\left[-\frac{3 \pi}{2},-\pi\right], \csc \theta=-\frac{5}{3}$, and $\tan \alpha=\frac{-3}{4}$, determine each value. Include two detailed diagrams.
c) $\tan 2 \theta$
$\sin \theta=-\frac{3}{5}$

$$
\begin{align*}
\text { a) } \left.\begin{array}{rl}
& \sin (\theta-\alpha) \\
= & \sin \theta \cos \alpha-\sin \alpha \cos \theta \\
= & \left(-\frac{3}{5}\right)\left(-\frac{4}{5}\right)-\left(\frac{4}{5}\right)\left(\frac{3}{5}\right) \\
= & \frac{12}{25}-\frac{12}{25} \\
= & 0
\end{array}\right\}=\frac{1}{}
\end{align*}
$$

b) $\cot 2 \theta$

$$
\begin{aligned}
& =\frac{1}{\tan 2 \theta} \\
& =\frac{1}{\left(-\frac{24}{7}\right)} \\
& =-\frac{7}{24}
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } \begin{aligned}
& \tan 2 \theta \\
&= \frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
&= \frac{2\left(-\frac{3}{4}\right)}{1-\left(-\frac{3}{4}\right)^{2}}
\end{aligned} \quad>=-\frac{3}{2} \div \frac{7}{16} \\
=-\frac{3}{12} \times \frac{168}{7}
\end{aligned}
$$

$$
\begin{array}{ll}
=\frac{2\left(-\frac{3}{4}\right)}{1-\left(-\frac{3}{4}\right)^{2}} \\
=\frac{-\frac{3}{2}}{1-\frac{9}{16}}
\end{array} \quad \begin{array}{lll}
=-\frac{3}{2} \times \frac{168}{7} & & \cos \theta=\frac{4}{5}
\end{array} \quad=-\frac{24}{7} \quad \begin{array}{ll}
&
\end{array}
$$

d) $\cos \frac{\theta}{2}(* * *)$

$$
\cos \theta=\cos 2\left(\frac{\theta}{2}\right)
$$

$$
\begin{aligned}
\cos \theta & =2 \cos ^{2}\left(\frac{\theta}{2}\right)-1 \\
\frac{4}{5} & =2 \cos ^{2}\left(\frac{\theta}{2}\right)-1
\end{aligned}
$$

$$
\frac{1}{2} \times \frac{9}{5}=\frac{1}{2} \cdot 2 \cos ^{2}\left(\frac{\theta}{2}\right)
$$

$$
\frac{9}{10}=\cos ^{2}\left(\frac{\theta}{2}\right)
$$

$$
\cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{9}{10}}
$$

$$
\cos \left(\frac{\theta}{2}\right)= \pm \frac{3}{\sqrt{10}}
$$

HW. Compound Angle Formulas Worksheet \#1 to 6 all

$$
\text { Note: } \frac{3 \pi}{2} \leq \theta \leq \pi
$$

$$
\left.\frac{1}{2}\right) \quad \frac{3 \pi}{4} \leqslant \frac{\theta}{2} \leqslant \frac{\pi}{2}
$$

$$
\therefore \frac{\theta}{2} \text { is in QII }
$$

$$
\text { so } \cos \left(\frac{\theta}{2}\right)=-\frac{3}{\sqrt{10}}
$$

