UNIT 3: TRIGONOMETRIC FUNCTIONS & EQUATIONS

3.1 The Definitions of Trigonometry

The Cartesian plane is fundamental in the study of trigonometry. Angles are related to the co-ordinate axes and associated with rotation. The xy plane is divide into four quadrants numbered, for convenience as shown.

An angle is in **standard position** if its vertex is at the origin in the xy plane, its initial arm is on the positive x-axis, and its terminal arm is a rotation of the initial arm about the origin.

If the rotation is counterclockwise, the angle has **positive** measure. The rotation is usually indicated by a directed arrow starting from the positive x-axis.

If the rotation is clockwise, the angle has **negative** measure.

negative rotation

If P(x, y) is a point on the terminal arm of an angle θ , a circle with centre the origin can be drawn through P(x, y) with the following radius:

The following definitions the form the basis of trigonometry.

Primary Trigonometric Values/Ratios				
sine $\theta = \frac{y}{r}$	cosine $\theta = \frac{x}{r}$	tangent $\theta = \frac{y}{x}$		
$\sin\theta = \frac{y}{r}$	$\cos\theta = \frac{x}{r}$	$\tan\theta = \frac{y}{x}$		

By writing the reciprocals of the above, other trigonometric values are defined.

To calculate the trigonometric values you only need to find a point on the terminal arm.

Ex. 1. The point (3, 4) is on the terminal arm of angle θ in standard position. Calculate the **primary** trigonometric ratios. Include a diagram.

Ex. 2. P(4, -4) is a point on the terminal arm of angle α in standard position. Calculate the **reciprocal** trigonometric values. Include a diagram.

Ex. 3. Draw a sketch of each angle in standard position. Calculate the primary trigonometric ratios for a) and the reciprocal trigonometric ratios for b).

a)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 b) $\csc^2 \theta = 1 + \cot^2 \theta$

Recall: The **CAST** rule

Definitions:

Coterminal angles share the same terminal arm and the same initial arm.

The principal angle is the angle between 0° and 360° .

The **related acute angle** is the angle formed by the terminal arm of an angle in standard position and the x-axis. The related acute angle is always positive and lies between 0° and 90° .

Ex. 4. Point P(-3, 4) is on the terminal arm of an angle in standard position.

- a) Sketch the principal angle, θ .
- **b**) Determine the value of the related acute angle to the nearest degree.
- c) What is the measure of θ to the nearest degree?

Ex. 5. A positive angle θ is in the third quadrant and $\sec \theta = -\frac{17}{8}$.

- **a**) Sketch the principal angle, θ .
- **b**) Determine the value of the related acute angle to the nearest degree.
- c) What is the measure of θ to the nearest degree?
- **d**) Find exact values for $\tan \theta$ and $\csc \theta$.

Ex. 6. Given that $\csc \alpha = -\frac{5}{3}$ and $0^{\circ} \le \alpha \le 360^{\circ}$,

- **a**) Find α . (Include diagrams)
- **b**) Determine exact values for $\cos \alpha$ and $\cot \alpha$.

3.3 Radian Measure

A **radian** is the measure of the angle subtended at the center of the circle by an arc equal in length to the radius of the circle.

&

$$\theta_{in\,radians} = \frac{arc\,length}{radius}$$
 or $\theta = \frac{a}{r}$ or $a = r\theta$

The measure of θ is defined to be 1 radian.

Angles can be measured in degrees or radians.

Ex. 1. Determine the relationship between degrees and radians.

Ex. 2. Change each radian measure to degree measure. Round to the nearest degree, if necessary. *Hint:* $\pi rad = 180^{\circ} \text{ or } 1 rad = \frac{180^{\circ}}{\pi}^{\circ}$: *To change radian measure to degree measure, multiply the number of radians by* $\frac{180^{\circ}}{\pi}^{\circ}$.

a)
$$\frac{\pi}{6}$$
 b) $\frac{5\pi}{4}$ **c)** $-\frac{3\pi}{2}$ **d)** 2.2

Ex. 3. Find the exact radian measure, in terms of π, for each of the following. *Hint:* 180° = π rad or 1° = π/180 rad: To change degree measure to radian measure, multiply the number of degrees by π/180 rad.
a) 45°
b) 60°
c) -210°
d) -720°

Ex. 4. Change each degree measure to radian measure, to 4 decimal places. **a)** 30° **b)** -230°

Ex. 5. Sketch each angle in standard position.

Ex. 6. Write the value of θ in exact radian measure with the given related acute angle for each of the following:

Ex. 7. Sector angles are drawn in a *unit* circle. Find the measure of the arc of the circle that subtends an angle measuring 60°. *Label the given diagram*.

Ex. 8. P(-1,5) is a point on the terminal arm of angle θ in standard position. Calculate the measure of the *principal angle* in radians to 1 decimal place. *Include a diagram*.

Ex. 9. The radian measures of angles are shown. Write the measure of the *coterminal angle* θ for $-2\pi \le \theta \le 2\pi$. *Include a diagram.*

3.4 Exact Trigonometric Ratios For Special Angles

Ex. 1. Find the exact value of each trigonometric ratio.

Ex. 2. Calculate the exact value of $\sin(-135^\circ) \cdot \cos 315^\circ + \cos 390^\circ \div \cot (-300^\circ)$.

Ex. 3. If $0^{\circ} \le \theta \le 360^{\circ}$, find possible values of θ for $\sec \theta = \sqrt{2}$. Include diagrams.

Ex. 4. If $0 \le \theta \le 2\pi$, find possible values of θ for $\cot \theta = -\frac{1}{\sqrt{3}}$. Include diagrams.

Warmup

- **1.** Given θ is an acute angle, express each quantity in terms of either $\sin \theta$, $\cos \theta$ or $\tan \theta$. **a)** $\sin(-\theta)$ **b)** $\cos(-\theta)$ **c)** $\tan(-\theta)$
- **2.** Given the identity $\sin^2 \theta + \cos^2 \theta = 1$, express: **a)** $\sin^2 \theta$ in terms of $\cos^2 \theta$ **b)** $\cos^2 \theta$ in terms of $\sin^2 \theta$

Example 1.

Develop the addition formula for sine, i.e. sin(a+b), in terms of angles *a* and *b* using the given diagram.

In ΔTUP , $\langle TUP =$ and in ΔRUQ , $\langle RUQ =$

In ΔTRS , $\sin(a+b) =$

In $\triangle TRU$, $\cos b =$ and $\sin b =$

In ΔTUP ,	and	in ΔRUQ ,
$\sin a =$		$\cos a =$

 $\because \sin(a+b) = UP + QU$

 $\therefore \sin(a+b) =$

Note:

By following a similar strategy and using the fact that TS = TP - SP, the following addition formula for cosine can be determined.

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

 $\sin (A + B) = \sin A \cos B + \cos A \sin B$ & $\cos(A + B) = \cos A \cos B - \sin A \sin B$

Ex. 2. Using the addition formulas for sine and cosine, develop the subtraction formulas, sin(A-B) and cos(A-B).

Ex. 3. Using the addition formulas for sine and cosine, develop the double-angle formulas, $\sin 2A$ and $\cos 2A$.

Ex. 4. Using the addition formulas for sine and cosine, develop the addition and subtraction formulas for tangent, tan(A+B) and tan(A-B). Also develop the double-angle formula, tan 2A.

Key Concepts for Compound Angle Formulas

• Addition, subtraction and double-angle identities for sine, cosine, and tangent

 $\sin (A+B) =$ $\sin (A-B) =$ $\sin 2A =$ $\cos (A+B) =$ $\cos 2A =$ = $\tan (A+B) =$ $\tan (A-B) =$ $\tan 2A =$

HW. Memorize these identities.

1. Given θ is an acute angle, express each quantity in terms of either $\sin \theta$ or $\cos \theta$ using an appropriate compound angle identity.

a)
$$\sin\left(\theta + \frac{3\pi}{2}\right)$$
 b) $\cos(\pi + \theta)$

c)
$$\cos\left(\frac{\pi}{2} - \theta\right)$$
 d) $\sin(\theta - 2\pi)$

2. Use an appropriate compound angle identity to determine an exact value for tan15°.

Ex. 1. Find the **exact** value of each of the following.

a)
$$\sin 15^{\circ}$$
 c) $\tan \frac{19\pi}{12}$

b)
$$\cos\frac{7\pi}{12}$$

Ex. 2. Express
$$\tan\left(\frac{\pi}{4} - x\right)$$
 in terms of $\tan x$.

Ex. 3. If $\sin \theta = \frac{5}{8}$ and $\sin \beta = \frac{4}{5}$ where θ and β are both acute angles, find an exact value for $\cos(\theta + \beta) - \cos(\theta - \beta)$.

Ex. 4. If $\tan A = -\frac{1}{2}$, and *A* lies in the interval $\frac{\pi}{2} \le A \le \pi$, determine the following: **a**) exact values for **i**) sin 2*A* **ii**) cos 2*A* **iii**) cos 4*A* **b**) the quadrant in which angle angle 2*A* lies

3.7 Addition, Subtraction and Double-Angle Formulas Continued

Ex. 1. Express as a single trigonometric function, and then evaluate.

a)
$$\cos 45^{\circ} \cos 15^{\circ} - \sin 45^{\circ} \sin 15^{\circ}$$
 b) $\frac{\tan \frac{\pi}{12} + \tan \frac{\pi}{6}}{1 - \tan \frac{\pi}{12} \tan \frac{\pi}{6}}$ **c**) $1 - 2\sin^2 \frac{5\pi}{8}$

Ex. 2. Express as a single sine or cosine function.

a)
$$40\sin x \cos x$$
 b) $\cos^2 3x - \sin^2 3x$ **c)** $8\sin \frac{x}{2} \cos \frac{x}{2}$

Ex. 3. If θ is in the interval $\left[\frac{3\pi}{2}, 2\pi\right]$, α is in the interval $\left[-\frac{3\pi}{2}, -\pi\right]$, $\csc \theta = -\frac{5}{3}$, and $\tan \alpha = \frac{-3}{4}$, determine each value. Include two detailed diagrams. **a)** $\sin(\theta - \alpha)$ **c)** $\cot 2\theta$

b)
$$\tan 2\theta$$
 d) $\cos \frac{\theta}{2}$ (***)

3.8 Trigonometric Identities

In terms of $\sin\theta$ and $\cos\theta$:

$$\tan \theta = \cot \theta = \csc \theta = \sec \theta =$$

 $\sin^2\theta + \cos^2\theta = \qquad \qquad \sin^2\theta = \qquad \qquad \cos^2\theta =$

Ex. 1. Prove the following identities.

a)
$$\frac{1+\cot\theta}{\csc\theta} = \sin\theta + \cos\theta$$

b) $\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$

c) $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$

d)
$$\frac{\sin t - \cos t}{\cos t} + \frac{\sin t + \cos t}{\sin t} = \sec t \csc t$$

$$e) \quad \frac{1}{1+\sin\phi} = \sec^2\phi - \frac{\tan\phi}{\cos\phi}$$

Ex. 1. Prove the following trigonometric identities.

a)
$$\frac{\sin 2x}{1+\cos 2x} = \tan x$$

b) $\tan x + \tan y = \frac{\sin (x+y)}{\cos x \cos y}$

c) $\sin 3\theta + \sin \theta = 2\sin 2\theta \cos \theta$

d)
$$\tan\frac{\theta}{2} + \cot\frac{\theta}{2} = 2\csc\theta$$