Given $y=a f[k(x-d)]+c$, the transformations on the graphs of $y=f(x)$ where $f(x)=\sin x$ or $f(x)=\cos x$ are as follows:
i) vertical reflection in the x-axis if $a<0$
ii) vertical stretch by a factor of $|a|$

Note: A stretch is an expansion if the stretch factor is more than 1 or a compression if the stretch factor is between 0 and 1.
iii) horizontal reflection in the y-axis if $k<0$
iv) horizontal stretch by a factor of $\frac{1}{|k|}$
v) horizontal translation right $|d|$ units if $d>0$ or left $|d|$ units if $d<0$
vi) vertical translation up $|c|$ units if $c>0$ or down $|c|$ units if $c<0$

$$
(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)
$$

Ex. 1. Graph each of the following functions by naming and using transformations on $y=\sin x$.
a) $y=-2 \sin x, 0 \leq x \leq 2 \pi$

Transformations on $y=\sin x$ are:
i) V.R. across x-axis
ii) V.E. by a factor of 2
$(x, y) \rightarrow(x,-2 y)$
b) $y=\sin 2 x, 0 \leq x \leq 2 \pi$

Transformations on $y=\sin x$ are:
i) H.C. by a factor
$(x, y) \rightarrow\left(\frac{1}{2} x, y\right)$
c) $y=\sin \left(x+\frac{\pi}{4}\right)+1,0 \leq x \leq 2 \pi$

i) H.T. $\frac{\pi}{4}$ units left
ii) V.T. Iunit up

Summary of Transformations on the Periodic Functions $y=\sin \theta$ and $y=\cos \theta$
For $y=a \sin k(\theta-d)+c$ and $y=a \cos k(\theta-d)+c$,

- the reflection of $y=\sin \theta$ or $y=\cos \theta$ is in the θ - axis if $a<0$
- the reflection of $y=\sin \theta$ or $y=\cos \theta$ is in the y-axis if $k<0$
- the amplitude is $|a|$
- the period is $\frac{1}{|k|} \times 2 \pi$ or $\frac{2 \pi}{|k|}<P=\frac{2 \pi}{K} \longleftrightarrow K=\frac{2 \pi}{P}$
- the phase shift is right $|d|$ units if $d>0$ or left $|d|$ units if $d<0$, and - the vertical translation is up $|c|$ units if $c>0$ or down $|c|$ units if $c<0$

Ex. 2. For each of the following graphs determine:
i) the amplitude, period, phase shift and vertical translation
ii) the sine function $y=a \sin k(\theta-d)+c$ and the cosine function $y=a \cos k(\theta-d)+c$
a)

$$
\begin{aligned}
& A: 1 \rightarrow|a|=1 \\
& P: 2 \pi \rightarrow K=1 \\
& \text { P.S: vary } \\
& \text { V.T.: none } \\
& \qquad \quad \begin{array}{l}
y \\
\quad \text { or } y=\cos \left(\theta-\frac{\pi}{4}\right) \\
\end{array} \quad \begin{array}{r}
\text { or }\left(\theta+\frac{\pi}{4}\right) \\
\text { or } y=-\sin \left(x-\frac{3 \pi}{4}\right)
\end{array}
\end{aligned}
$$

b)

$$
\begin{aligned}
& A: 1 \rightarrow|a|=1 \\
& P: \pi \rightarrow K=\frac{2 \pi}{P}=\frac{2 \pi}{\pi}=2
\end{aligned}
$$

P.S: varies
V.T.: up 1 unit $\rightarrow c=+1$

$$
\begin{aligned}
y & =\cos 2\left(\theta-\frac{\pi}{4}\right)+1 \\
\text { or } y & =\sin 2 \theta+1
\end{aligned}
$$

Ex. 3. State the amplitude, period, phase shift, and vertical translation for each of the following
functions and graph for one period.
a) $f(x)=\sin 3 x-2$

A: 1
P: $\frac{2 \pi}{3}$
P.S: none
V.T.: down 2units

Period scale:

$$
\frac{1}{4} \times \text { Period }
$$

$$
=\frac{1}{42} \cdot \frac{2 \pi}{3}
$$

$$
y=-2
$$

b) $y=3 \cos \left(2 \theta-\frac{\pi}{2}\right)^{*} \xrightarrow{*} y=3 \cos \left[2\left(\theta-\frac{\pi}{4}\right)\right]$
$A: 3$
$P: \pi$
P.S.: $\frac{\pi}{4}$ right
V.T.: none

Period Scales

$$
\begin{aligned}
& \frac{1}{4} \times \text { Period } \\
& =\frac{1}{4} \cdot \pi \\
& =\frac{\pi}{4} * \text { musthaver L.C.D with }
\end{aligned}
$$

HW. Exercise 4.5
\qquad
Ex. 1. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for one cycle and state the domain and range.

$$
\text { V.R. in } x \text {-axis }
$$

a) $y=-2 \cos \left(x+\frac{\pi}{4}\right)+2$

A:2 P: 2π
P.S.: $\frac{\pi}{4}$ Left V.T.: 2 units up

Period scale:
start $\quad \frac{1}{4} \cdot 2 \pi=\frac{\pi}{2}=\frac{2 \pi}{4}$

$$
\left(x-\text { scale }: \frac{\pi}{4}\right)
$$

$$
D:\left\{x \in \mathbb{R} \left\lvert\,-\frac{\pi}{4} \leq x \leq \frac{7 \pi}{4}\right.\right\}
$$

$$
R:\{y \in \mathbb{R} \mid 0 \leq y \leq 4\}
$$

b) $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{3}\right) \rightarrow y=\frac{1}{2} \sin \left[2\left(x-\frac{\pi}{6}\right)\right]$
V.R.: none $A: \frac{1}{2} \quad P: \frac{2 \pi}{2}=\pi$ PS.: $\frac{\pi}{6}$ right $\frac{a \pi}{12}$ T: none Period Scale:

$$
\begin{aligned}
& \frac{1}{4} \cdot \pi=\frac{\pi}{4}=\frac{3 \pi}{12} \\
& x-\text { scale }=\frac{\pi}{12}
\end{aligned}
$$

$$
\begin{aligned}
& D:\left\{x \in \mathbb{R} \left\lvert\, \frac{\pi}{6} \leq x \leq \frac{7 \pi}{6}\right.\right\} \\
& R:\left\{y \in \mathbb{R} \left\lvert\,-\frac{1}{2} \leq y \leq \frac{1}{2}\right.\right\}
\end{aligned}
$$

Ex. 2. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for the specified domain and then state the range.
a) $y=-3 \sin \left(\frac{1}{2} x-\frac{\pi}{2}\right)-2,-2 \pi \leq x \leq 4 \pi$ $y=-3 \sin \left[\frac{1}{2}(x-\pi)\right]-2$
V.R. in x-axis

A: 3
PS.: $I 1$ units right VT: units down

Period Scale:

$$
\begin{aligned}
P & =\frac{2 \pi}{k} \\
& =\frac{2 \pi}{\left(\frac{\pi}{2}\right)} \\
& =2 \pi \times \frac{2}{1} \\
& =4 \pi
\end{aligned}
$$

$$
\frac{1}{4} \times 4 \pi
$$

$$
=\pi
$$

b) $y=\cos 3\left(x+\frac{\pi}{4}\right),-\pi \leq x \leq \pi$

Reflection: none
A: 1
PS: : $\frac{\pi}{4}$ units ${ }^{\frac{3 \pi}{2}}$ bet VT.: none

Period:

$$
P=\frac{2 \pi}{3}
$$

Period scale:

$$
\frac{1}{4} \times \frac{2 \pi}{3}
$$

$$
=\frac{\pi}{6}=\frac{2 \pi}{12}
$$

HW. Exercise 4.6

Ex. 1. A carnival Ferris wheel with a radius of 20 m makes three complete revolutions in 2 minutes. Passengers get on at the lowest point which is 1 m above the ground.
a) Draw a graph to show how a person's height, h, above the ground in metres, varies with time, t, in seconds, for two revolutions.

3 rev in 120 sec 1 rev in 40 sec
 Period scale $\frac{1}{4} \cdot 40=10 \mathrm{~s}$

b) Write an equation which expresses your height as a function of time on the ride.

$$
\begin{aligned}
& h(t)=-20 \cos \frac{\pi}{20} t+21 \\
& A=20, \begin{aligned}
k & =\frac{2 \pi}{P} \\
& =\frac{2 \pi}{40}
\end{aligned} \\
& \text { or } h(t)=20 \sin \frac{\pi}{20}(t-10)+21 \\
& =\frac{\pi}{20}
\end{aligned}
$$

c) Calculate your height above the ground after 15 s .

$$
\begin{aligned}
h(15) & =-20 \cos \left[\frac{\pi}{20} \cdot 15\right]+21 \\
& =-20 \cos \left(\frac{3 \pi}{4}\right)+21 \\
& \left.=-20\left(-\frac{1}{\sqrt{2}}\right)+21=\frac{20}{\sqrt{2}}+21\right] \div 35.1
\end{aligned}
$$

d) At what times will the rider be 30 m above the ground?

$$
\begin{aligned}
& \text { Find } t \text { if } h=30 \mathrm{~m} \\
& -20 \cos \frac{\pi}{20} t+21=30 \\
& \cos \frac{\pi}{20} t=-\frac{9}{20} \\
& \text { Let } \theta=\frac{\pi}{20} t \\
& \cos \theta=-\frac{9}{20} \\
& \text { aaa }=\cos ^{-1}\left(+\frac{9}{20}\right) \quad \therefore \text { the rider is } 30 \mathrm{~m} \text { above } \\
& =1.104 \\
& \text { IntI: } \\
& \theta=\pi+r a a \\
& \theta \doteq 4.246 \\
& \frac{\pi}{20} t=4.246 \\
& t \doteq 27.0 \\
& t \doteq 13,0 \\
& \begin{array}{l}
\therefore \text { The rider is } 30 \mathrm{~m} \text { above } \\
\text { ground at the times }
\end{array} \\
& (13+40 n) \text { and }
\end{aligned}
$$

Ex. 2. The daily high temperature of the city of Waterloo, in degrees Celsius, as a function of the number of days into the year, can be described by the function $T(d)=-20 \cos \frac{2 \pi}{365}(d+10)+25$
a) Use the function to determine today's temperature to the nearest degree Celsius.

$$
\begin{aligned}
T(117) & =-20 \cos \left[\frac{2 \pi}{365}(117+10)\right]+25 \\
& \doteq 37^{\circ} \\
& \therefore \text { the temperature is approx } 37^{\circ} \text { on } \\
& \text { April } 27 .
\end{aligned}
$$

b) Determine the range of this function. Explain the meaning of the range in this application.

$$
\begin{aligned}
25-20 & \leq T \leq 25+20 \quad \therefore \quad \therefore \text { the temperature ranges } \\
5 & \leq T \leq 45 \quad \text { between } 5^{\circ} \text { and } 45^{\circ}
\end{aligned}
$$

Ex. 3. The temperature, T, in degrees Celsius, of the surface water in a swimming pool varies according to the following graph, where t is the number of hours since sunrise at 6 a.m.
a) Find possible cosine and sine equations for the temperature of the surface water as a function of time.

$$
\begin{aligned}
& T(t)=-3 \cos \frac{\pi}{12} t+22 \\
& \text { or } \\
& T(t)=3 \sin \frac{\pi}{12}(t-6)+22 \\
& k=\frac{2 \pi}{2}, \quad \text { Period Scale: } A=3 \\
& =\frac{2 \pi}{24}, \\
& =\frac{\pi}{42}, \\
&
\end{aligned}
$$

b) At what times is the temperature of the surface water at least $23^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \text { Find if } T=23 \\
& -3 \cos \frac{\pi}{12} t+22=23 \\
& \cos \frac{\pi}{12} t=-\frac{1}{3} \\
& r a a
\end{aligned} \begin{aligned}
& \doteq \cos \left(+\frac{1}{3}\right) \\
& \doteq 1.231
\end{aligned}
$$

Date: \qquad

Unit 4 Test Review

Warmup

1. Each of the diagrams below is the graph of a sinusoidal function.
a) Express as a sine function.
b) Express as a cosine function.

2. The function $y=\sin (x-c)+d$ has been vertically translated 3 units down and passes through the point $\left(\frac{\pi}{6},-2\right)$. Determine the values of c and d. $\stackrel{\sim}{c}$

$$
\begin{aligned}
& \text { Find } c \text { if } d=-3, x=\frac{\pi}{6}, y=-2 \\
&-2=\sin \left(\frac{\pi}{6}-c\right)-3 \\
& 1=\sin \left(\frac{\pi}{6}-c\right) \\
& r_{y} \quad \operatorname{let} \frac{\pi}{6}-c=z \\
& \sin z=1 \\
& \therefore \frac{\pi}{6}-c=\frac{\pi}{2} \\
&-c=\frac{\pi}{2}-\frac{\pi}{6} \\
&-c=\frac{3 \pi}{6}-\frac{\pi}{6}
\end{aligned} \quad \therefore-c=\frac{2 \pi}{6} \quad \begin{aligned}
-c=\frac{\pi}{3} \\
\therefore c=-\frac{\pi}{3}
\end{aligned} \quad \begin{aligned}
-1
\end{aligned} \quad y=\sin \left(x+\frac{\pi}{3}\right)-3
$$

3. Solve the following trigonometric inequality for x in the domain $[0, \pi]$ and state your final answer in a solution set.

$$
\cos 2 x<\sin x
$$

Let $f(x)=\cos 2 x ; g(x)=\sin x$
and graph for $0 \leqslant x \leqslant \pi$
Find x, if $\cos 2 x=\sin x$

$$
\begin{aligned}
1-2 \sin ^{2} x & =\sin x \\
2 \sin ^{2} x+\sin x-1 & =0 \\
(2 \sin x-1)(\sin x+1) & =0
\end{aligned}
$$

$\sin x=\frac{1}{2}$ or $\sin x=-1$
\therefore SSS. $=\left\{x \in \mathbb{R} \left\lvert\, \frac{\pi}{6}<x<\frac{5 \pi}{6}\right.\right\}$
$\operatorname{In} Q I: x=\frac{\pi}{6} \quad \therefore x=\frac{3 \pi}{2}$
In QI: $x=\frac{5 \pi}{6} \quad$ not in

