4.5 Transformations of Sine and Cosine Graphs

Given y = a f[k(x-d)] + c, the **transformations** on the graphs of y = f(x) where $f(x) = \sin x$ or $f(x) = \cos x$ are as follows:

- i) *vertical reflection* in the *x*-axis if a < 0
- ii) *vertical stretch* by a factor of |a|Note: A stretch is an **expansion** if the stretch factor is more than 1 or a **compression** if the stretch factor is between 0 and 1.
- iii) *horizontal reflection* in the y-axis if k < 0
- iv) *horizontal stretch* by a factor of $\frac{1}{|k|}$
- **v**) *horizontal translation* right |d| units if d > 0 or left |d| units if d < 0
- vi) vertical translation up |c| units if c > 0 or down |c| units if c < 0

$$(x, y) \rightarrow \left(\frac{1}{k}x + d, ay + c\right)$$

Ex. 1. Graph each of the following functions by naming and using transformations on $y = \sin x$.

Summary of Transformations on the Periodic Functions $y = \sin \theta$ and $y = \cos \theta$

For $y = a \sin k(\theta - d) + c$ and $y = a \cos k(\theta - d) + c$,

- the *reflection* of $y = \sin \theta$ or $y = \cos \theta$ is in the θ -axis if a < 0
- the *reflection* of $y = \sin \theta$ or $y = \cos \theta$ is in the y axis if k < 0
- the *amplitude* is |a|
- the *period* is $\frac{1}{|k|} \times 2\pi$ or $\frac{2\pi}{|k|}$ \longrightarrow $P = \frac{2u}{k} \longleftrightarrow K = \frac{2\pi}{P}$
- the *phase shift* is right |d| units if d > 0 or left |d| units if d < 0, and
- the *vertical translation* is **up** |c| units if c > 0 or **down** |c| units if c < 0

Ex. 2. For each of the following graphs determine:

- i) the amplitude, period, phase shift and vertical translation
- ii) the sine function $y = a \sin k(\theta d) + c$ and the cosine function $y = a \cos k(\theta d) + c$

Ex. 1. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for one cycle and state the domain and range.

Ex. 2. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for the specified domain and then state the range.

4.7 Applications of Trigonometric Functions

- **Ex. 1.** A carnival Ferris wheel with a radius of 20 m makes three complete revolutions in 2 minutes. Passengers get on at the lowest point which is 1 m above the ground.
 - a) Draw a graph to show how a person's height, h, above the ground in metres, varies with time, t, in seconds, for two revolutions.
 3rev in 120 sec P

Iven in 40 sec Period scale

 $\frac{1}{14}$, 40 = 10s.

b) Write an equation which expresses your height as a function of time on the ride.

$$h(t) = -20\cos \frac{\pi}{20}t + 21 \qquad A = 20, \ k = \frac{2\pi}{40} = \frac{2\pi}{40}$$
$$= \frac{2\pi}{20}$$

c) Calculate your height above the ground after 15 s.

$$h(15) = -20 \cos\left[\frac{\pi}{20}, 15\right] + 21$$
$$= -20 \cos\left(\frac{3\pi}{4}\right) + 21$$
$$= -20(-\frac{1}{\sqrt{22}}) + 21 = \frac{20}{\sqrt{21}} + 21 = 35.1$$

d) At what times will the rider be 30 m above the ground? Find t f h = 30 m $-20\cos\frac{\pi}{20}t + 21 = 30$ $\cos\frac{\pi}{20}t = -\frac{9}{20}$ Let $\Theta = \frac{\pi}{20}t$ $\cos\Theta = -\frac{9}{20}$ $raa \pm \cos^{-1}(t+\frac{9}{20})$ ± 1.104 $D = \pi - raa$ $\Theta = \pi - raa$ $\Theta = \pi - raa$ $\Theta \pm 2.038$ T = 4.246 T = 4.246 $t \pm 0.038$ $t \pm 0.038$ $t \pm$

Ex. 2. The daily high temperature of the city of Waterloo, in degrees Celsius, as a function of the number of days into the year, can be described by the function $T(d) = -20 \cos \frac{2\pi}{365} (d+10) + 25$

a) Use the function to determine today's temperature to the nearest degree Celsius.

$$T(117) = -20 \cos\left[\frac{2\pi}{365}(117+10)\right] + 25$$

$$= 37^{\circ}$$

.:. the temperature is approx 37° on
April 27.

b) Determine the range of this function . Explain the meaning of the range in this application.

Ex. 3. The temperature, T, in degrees Celsius, of the surface water in a swimming pool varies according to the following graph, where t is the number of hours since sunrise at 6 a.m.

> a) Find possible cosine and sine equations for the temperature of the surface water as a function of time.

1 .

$$T(t) = -3\cos \frac{\pi}{12}t + 22$$

or

$$T(t) = 3\sin \frac{\pi}{12}(t-6) + 22$$

$$k = \frac{2\pi}{P} , \quad Period Scale; \quad A=3$$

 $=\frac{211}{24}$

0 11

b) At what times is the temperature of the surface water at least $23 \degree C$?

-24

Find t if
$$T = 23$$

 $-3\cos\frac{\pi}{12}t + 22 = 23$
 $\cos\frac{\pi}{12}t = -\frac{1}{3}$
 $raa = \cos(t + \frac{1}{3})$
 $= 1.231$
 $\sum In QII: In QIII: In$

1:17

<u>Warmup</u>

- 1. Each of the diagrams below is the graph of a sinusoidal function.
 - a) Express as a sine function.b) Express as a cosine function.

2. The function $y = \sin(x-c) + d$ has been vertically translated 3 units down and passes through the

point
$$\left(\frac{\pi}{6}, -2\right)$$
. Determine the values of c and d .
 $x \xrightarrow{\gamma} y$
Find c if $d=-3$, $x = \overline{t}$, $y = -2$
 $-2 = \sin(\overline{t} - c) \xrightarrow{-3}$
 $1 = \sin(\overline{t} - c) \xrightarrow{-3}$
 $1 = \sin(\overline{t} - c) \xrightarrow{-3}$
 $1 = \sin(\overline{t} - c) \xrightarrow{-3}$
 $-c = \overline{t}$
 $-c = \overline{t} - \overline{t}$
 $-c = -\overline{t} - \overline{t}$

3. Solve the following trigonometric inequality for x in the domain $[0, \pi]$ and state your final answer in a solution set.

Let $f(x) = \cos 2x < \sin x$ transformations: k=2.: P=TLet $f(x) = \cos 2x = g(x) = \sin x$ and graph for $0 \le x \le \pi$ Find x, if $\cos 2x = \sin x$ $|-2\sin^2 x = \sin x$ $2\sin^2 x + \sin x - 1 = 0$ $(2\sin x - 1)(\sin x + 1) = 0$ $\sin x = \frac{1}{2}$ or $\sin x = -1$ $\ln 0I: x = \frac{\pi}{6}$ $\therefore x = \frac{3\pi}{2}$ $In 0I: x = \frac{\pi}{6}$ not in domain

HW. Unit 4 Review Exercise