4.1 Graphing the Primary and Reciprocal Trigonometric Functions

1. Graph $y=\sin \theta$ and its reciprocal function on the same grid for $-2 \pi \leq \theta \leq 2 \pi$.

Complete:

Properties of the function $y=\sin \theta$
i) Length of the period: \qquad
ii) Domain: \qquad
iii) Range: \qquad

Properties of the function $y=\csc \theta$
i) Length of the period: \qquad
ii) Domain: \qquad
iii) Range:
2. Graph $y=\cos \theta$ and its reciprocal function on the same grid for $-2 \pi \leq \theta \leq 2 \pi$.

Complete:

Properties of the function $y=\cos \theta$
i) Length of the period: \qquad
ii) Domain: \qquad
iii) Range: \qquad iii) Range:
ii) Domain:

Properties of the function $y=\sec \theta$
i) Length of the period: \qquad
\qquad
\qquad
3. Graph $y=\tan \theta$ and its reciprocal function on separate grids for $-2 \pi \leq \theta \leq 2 \pi$.

Complete:

Properties of the function $y=\tan \theta$
i) Length of the period: \qquad
ii) Domain: \qquad
iii) Range: \qquad
iv) Asymptotes: \qquad

Properties of the function $y=\cot \theta$
i) Length of the period:
ii) Domain:
iii) Range:
iv) Asymptotes: \qquad

HW. Memorize the graphs of all trigonometric functions for $-2 \pi \leq \theta \leq 2 \pi$ and complete Exercise 4.1

Ex. 1. Determine exact solutions for each equation in the interval $x \in[0,2 \pi]$.
a) $2 \sin x-\sqrt{3}=0$
b) $4 \sec ^{2} x-8=0$

Ex. 2. Determine approximate solutions for each equation in the interval $x \in[0,2 \pi]$, to the nearest hundredth of a radian.
a) $2 \tan x+1=0$
b) $\cot ^{2} x-0.64=0$

Ex. 3. Determine exact solutions where possible for each equation in the interval $x \in[0,2 \pi]$. Round approximate solutions to the nearest hundredth of a radian.
a) $\sin x \cos x+\sin x=0$
b) $2 \csc ^{2} x+\csc x-1=0$
c) $6 \cos ^{2} x=7 \cos x-2$

Ex. 1. Solve for $0 \leq \theta \leq 2 \pi$ and $0 \leq A \leq 4 \pi$.
a) $\cos ^{2} 2 \theta+\cos 2 \theta=0$
b) $\tan \frac{A}{2}+1=0$
c) $2 \sin 2 \theta+\sqrt{3}=0$

Ex. 2. Solve for θ. Give exact solutions where possible and round approximate solutions to the nearest hundredth of a radian.
a) $-5 \sin \theta=\cos 2 \theta+2,-2 \pi \leq \theta \leq 0$
b) $-5 \cos \theta-\cos 2 \theta=2,0 \leq \theta \leq 2 \pi$
\qquad

4.4 Solving Trigonometric Equations Involving Absolute Value \&
 Solving Trigonometric Inequalities by Graphing

Warmup

Solve each of the following equations. State exact answers where possible. Otherwise round your answers to two decimal places.
a) $2 \cos \left(x+\frac{5 \pi}{6}\right)+4=3,0 \leq x \leq 2 \pi$
b) $5 \tan \left(x-\frac{\pi}{3}\right)+3=1,-\pi \leq x \leq \pi$

Ex. 1. Find all values of x in the interval $[0,2 \pi]$ that satisfy the equation $|\sin x|=1$.

Ex. 2. Find all values of x in the interval $[0,2 \pi]$ that satisfy the inequality $\sqrt{2}-2 \cos x>0$.

Ex. 3. Find all values of x in the interval $[-2 \pi, 0]$ that satisfy the inequality $\sin x-\cos x \leq 0$.

Given $y=a f[k(x-d)]+c$, the transformations on the graphs of $y=f(x)$ where $f(x)=\sin x$ or $f(x)=\cos x$ are as follows:
i) vertical reflection in the x-axis if $a<0$
ii) vertical stretch by a factor of $|a|$

Note: A stretch is an expansion if the stretch factor is more than 1 or a compression if the stretch factor is between 0 and 1.
iii) horizontal reflection in the y-axis if $k<0$
iv) horizontal stretch by a factor of $\frac{1}{|k|}$
v) horizontal translation right $|d|$ units if $d>0$ or left $|d|$ units if $d<0$
vi) vertical translation up $|c|$ units if $c>0$ or down $|c|$ units if $c<0$

$$
(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)
$$

Ex. 1. Graph each of the following functions by naming and using transformations on $y=\sin x$.
a) $y=-2 \sin x, 0 \leq x \leq 2 \pi$

b) $y=\sin 2 x, 0 \leq x \leq 2 \pi$

c) $y=\sin \left(x+\frac{\pi}{4}\right)+1,0 \leq x \leq 2 \pi$

Summary of Transformations on the Periodic Functions $y=\sin \theta$ and $y=\cos \theta$
For $y=a \sin k(\theta-d)+c$ and $y=a \cos k(\theta-d)+c$,

- the reflection of $y=\sin \theta$ or $y=\cos \theta$ is in the θ - axis if $a<0$
- the reflection of $y=\sin \theta$ or $y=\cos \theta$ is in the y-axis if $k<0$
- the amplitude is $|a|$
- the period is $\frac{1}{|k|} \times 2 \pi$ or $\frac{2 \pi}{|k|}$
- the phase shift is right $|d|$ units if $d>0$ or left $|d|$ units if $d<0$, and
- the vertical translation is up $|c|$ units if $c>0$ or down $|c|$ units if $c<0$

Ex. 2. For each of the following graphs determine:
i) the amplitude, period, phase shift and vertical translation
ii) the sine function $y=a \sin k(\theta-d)+c$ and the cosine function $y=a \cos k(\theta-d)+c$
a)

b)

Ex. 3. State the amplitude, period, phase shift, and vertical translation for each of the following functions and graph for one period.
a) $f(x)=\sin 3 x-2$

b) $y=3 \cos \left(2 \theta-\frac{\pi}{2}\right)$

Ex. 1. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for one cycle and state the domain and range.
a) $y=-2 \cos \left(x+\frac{\pi}{4}\right)+2$

b) $y=\frac{1}{2} \sin \left(2 x-\frac{\pi}{3}\right)$

Ex. 2. For each of the following state any reflections, the amplitude, period, phase shift and vertical translation. Graph the curve for the specified domain and then state the range.
a) $y=-3 \sin \left(\frac{1}{2} x-\frac{\pi}{2}\right)-2,-2 \pi \leq x \leq 4 \pi$

b) $y=\cos 3\left(x+\frac{\pi}{4}\right),-\pi \leq x \leq \pi$

4.7 Applications of Trigonometric Functions

Ex. 1. A carnival Ferris wheel with a radius of 20 m makes three complete revolutions in 2 minutes. Passengers get on at the lowest point which is 1 m above the ground.
a) Draw a graph to show how a person's height, h, above the ground in metres, varies with time, t, in seconds, for two revolutions.

b) Write an equation which expresses your height as a function of time on the ride.
c) Calculate your height above the ground after 15 s .
d) At what times will the rider be 30 m above the ground?

Ex. 2. The daily high temperature of the city of Waterloo, in degrees Celsius, as a function of the number of days into the year, can be described by the function $T(d)=-20 \cos \frac{2 \pi}{365}(d+10)+25$
a) Use the function to determine today's temperature to the nearest degree Celsius.
b) Determine the range of this function . Explain the meaning of the range in this application.

Ex. 3. The temperature, T, in degrees Celsius, of the surface water in a swimming pool varies according to the following graph, where t is the number of hours since sunrise at 6 a.m.
a) Find possible cosine and sine equations for the temperature of the surface water as a function of time.

b) At what times is the temperature of the surface water at least $23^{\circ} \mathrm{C}$?

Warmup

1. Each of the diagrams below is the graph of a sinusoidal function.
a) Express as a sine function.

b) Express as a cosine function.

2. The function $y=\sin (x-c)+d$ has been vertically translated 3 units down and passes through the point $\left(\frac{\pi}{6},-2\right)$. Determine the values of c and d.
3. Solve the following trigonometric inequality for x in the domain $[0, \pi]$ and state your final answer in a solution set.
$\cos 2 x<\sin x$

