MHF4UI Unit 5: Day 1

3
Ex. 2. Simplify each of the following, using the laws of exponents.

Date: UNIT 5: EXPONENTIAL FUNCTIONS
5.1 Laws of Exponents and Exponential Equations
Your study of calculus will require an ability to manipulate rational and negative
exponents. The exponent laws enable us to simplify and evaluate expressions
involving exponents. Here is a summary of the exponent laws.
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Ex. 1. Evaluate each of the following:
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Exponential Equations
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MHF4UI Unit 5: Day 2
Date: 5.2 Investigating the Graphs of Exponential Functions

f(x)=b* & f(x)=a(b)*** +c

I Graphing Exponential Functions of the Form y=b*, wherei) b>1& ii) 0<b<1

Ex. 1. Complete the following table of values and graph the following exponential functions on
the same axes.
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I1 Transformations on the Exponential Function f(x)=b* ,where f(x)=a(b)**® +c
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Ex. 2. Graph each of the following, by naming and applying transformations on an appropriate
exponential function.

1 ~(x+3
2) y=@2 o yE (3 - ) 100=-1@ 41350023 C) MEE
Transformationson v = ( 3> : Transformations on L(j -3 are:
i) HE. by o factor ofi ) K 1n seouis
i) YT 2 gw\}‘h‘ right i) \Jl.C. bu o foctor of 3
i) \. T 4 unrt ogouJV\ i) H.R. i u oS
(’Xﬁp —> (27‘ ¥2, U"') iv) H.TC ’%u\l/\l'l'S 9\0_'F{"

VLT, 1 uhas wo.
(X, l:P —> (—7;3,—?'_1“3)

Y
B T B T E | || X X
(3, ) "+ L
¢1,9) ( > ’L—g _x=3
¢-1,3) (-2, é_) 3 = Q\(D
(b, 0 L_\ ’ —\S
Q%) e,
Lll-‘-i\_) LIJ 3)
(>4 (1, )
(3,1%)
Horizontal Asymptote: Y = — \ Horizontal Asymptote: U =13
Domain : {X &@ d Domain : ’)r7( &ﬂfﬁ
Range: S uc®. \q >—(} Range: gbféﬂl\ y 4\’5}
y—intercept: 2 y —intercept 7 \2%%
_intercept: 2 X — intercept : = -5 = -5.9(3

HW. Exercise 5.2



MHF4UI Unit 5: Day 3
Date: 5.3 Exponential Growth and Decay

Exponential growth or decay occurs when quantities increase or decrease at a rate proportional to
the initial quantity present. This growth or decay occurs in savings accounts, the size of populations,

appreciation, depreciation, and with radioactive chemicals. All problems of this type can be modeled
by the exponential function

i) y=a-b* where or i) A=A, (1£r)" where
-y is the final amount or number - A is the final amount or number
- a is the initial amount or number - A, isthe initial amount or number
- b is the growth or decay factor - r is the growth or decay rate
- X is the number of growth or decay periods - n is the number of growth or decay periods

Ex. 1. Anantique vase was purchased in 1980 for $8000. If the vase appreciates in value by
6% per year, what is its estimated value in the year 2015, to the nearest hundred dollar?
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Ex. 2. A car depreciates by 15% per year. If you buy a car for $20 000, find the value of the

car in three years to the nearest hundred dollar and estimate when the car will be worth
half of its original value.
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Ex. 3. The population of a town was 24 000 in 1980 and 29 000 in 1990.
a) Determine the annual growth rate for the town during this period

b) Determine an expression for the population, P, at time t years after 1980.
¢) Use this expression to estimate the population of the town in 2012.
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Ex. 4. The population of the world was 6 billion in 1999. This population is growing
exponentially anq doubles every 51 years. Estimate the world population i 20 [+
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Ex. 5. A hospital uses cobalt-60 in its radiotherapy treatment for cancer patients. Cobalt-60
has a half-life of 5.2 years. This means that every 5.2 years, 50% of the original
sample of cobalt-60 has decayed. The hospital has 80 g of cobalt-60.

How much of the original sample will there be after 1 year to the nearest gram?
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Ex. 6. The isotope, radioactive strontium-90, decays to 25% of its original mass after
approximately 58 years. Determine its half-life.
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Ex. 7. Inarecent dig, a human skeleton was unearthed. It was later found that the amount

of carbon-14 in it had decayed to % of its original amount.

If carbon -14 has a half-life of 5730 years, how old is the skeleton?
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MHF4UI Unit 5: Day 4
5.4 Simplifying Using Exponent Laws

Date:

Ex. 1. Rewrite each expression as the sum and/or difference of terms, where each term

is of the form ax".
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Ex. 2. Completely factor each of the following expressions.
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MHF4UI Unit 5: Review
Date:

) Unit 5 Test Review
}:(7(\: - - +|

1. Sketch the graph of f(x)=-e*** +1 by naming and applying transformations on an appropriate
function. [ -i

Determine the x and y-intercepts algebraically and mark these points on the graph
The transformations on 8% e* are
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Rewrite each expression as the sum and/or difference of terms, where each term is of the form ax
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6. Joe’s parents invested $4000 in an account when he was born. The account pays interest at
6%/a, compounded quarterly. How much money will be in the account on Joe’s 18" birthday?
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7. One bacterium divides into two bacteria every 5 days. Initially, there are 15 bacteria.
a) How many bacteria will there be in 10 days? b) What is the approximate growth rate per day?
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8. A small self-contained forest was studied for squirrel population by a biologist. It was found
that the forest population, P, was a function of time, t, where t was measured in weeks
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The function was P = 13%
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a) Find the population at the start of the study and after one year.
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b) The largest population the forest can sustain is represented mathematically by Iooking at the
end behaviour of the function, P, specifically as t -=0

Determine the largest squirrel population the forest can sustain.
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