5.1 Laws of Exponents and Exponential Equations

Your study of calculus will require an ability to manipulate rational and negative exponents. The exponent laws enable us to simplify and evaluate expressions involving exponents. Here is a summary of the exponent laws.

Exponent Laws

$$
\begin{array}{lll}
a^{m} \times a^{n}=a^{m+n} & a^{-m}=\left(\frac{1}{a}\right)^{m} \text { or } \frac{1}{a^{m}} & a^{-\frac{1}{n}}=\frac{1}{\sqrt[n]{a}} \\
\frac{a^{m}}{a^{n}}=a^{m-n} & \frac{1}{a^{-m}}=a^{m} & a^{\frac{m}{n}}=\left(a^{\frac{1}{n}}\right)^{m} \text { or }\left(a^{m}\right)^{\frac{1}{n}} \\
\left(a^{m}\right)^{n}=a^{m n} & \left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m} & a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \text { or } \sqrt[n]{a^{m}} \\
(a b)^{m}=a^{m} b^{m} & a^{\frac{1}{n}}=\sqrt[n]{a} & a^{0}=1
\end{array}
$$

Ex. 1. Evaluate each of the following:
a) $\frac{2^{-4}-2^{-6}}{2^{-5}-2^{-3}} \cdot \frac{2^{6}}{2^{6}}$
b) $\frac{9^{n+2} \times 27^{n-4}}{81^{n-1} \times 3^{n}}$
$=\frac{2^{2}-2^{0}}{2^{1}-2^{3}}$
$=\frac{\left(3^{2}\right)^{n+2} \times\left(3^{3}\right)^{n-4}}{\left(3^{4}\right)^{n-1} \times 3^{n}}$
c) $\frac{4^{\frac{-3}{2}}-8^{\frac{1}{3}}}{16^{\frac{1}{4}} \times 25^{\frac{1}{2}}}$
$=\frac{4-1}{2-6}$

$$
=\frac{\frac{1}{\left(\sqrt{4)^{3}}\right.}-\sqrt[3]{8}}{\sqrt[4]{16} \times \sqrt{25}}
$$

$=\frac{3}{-6}$
$=-\frac{1}{2}$

$$
\begin{aligned}
& =\frac{3^{2 n+4} \times 3^{3 n-12}}{3^{4 n-4} \times 3^{n}} \\
& =\frac{3^{5 n-8}}{3^{5 n-4}} \\
& =3^{(5 n-8)-(5 n-4)} \\
& =3^{-4} \\
& =\frac{1}{81}
\end{aligned}
$$

Ex. 2. Simplify each of the following, using the laws of exponents.
a) $\frac{\sqrt[3]{a^{4}} \times \sqrt{a}}{(\sqrt[4]{a})^{3}}$
$=\frac{a^{\frac{4}{3}} \times a^{\frac{1}{2}}}{a^{\frac{3}{4}}}$
$=a^{\frac{16}{2}+\frac{6}{12}-\frac{9}{12}}$
$=a^{\frac{13}{12}}$
b) $\frac{\left(\sqrt[3]{64 x^{6} y^{3}}\right)\left(\sqrt{64 x^{-6} y^{4}}\right)}{\left(-2 x^{2} y^{-1}\right)^{3}}$
$=\frac{\left(4 x^{2} y\right)\left(8 x^{-3} y^{2}\right)}{-8 x^{6} y^{-3}}$
$=\frac{32 x^{-1} y^{3}}{-8 x^{6} y^{-3}}$
$=-4 x^{-7} y^{6}$
$=-\frac{4 y^{6}}{x^{7}}$
c) $\frac{\left(x^{2} y-x y^{2}\right)^{3}}{(x y)^{4}}$
$=\frac{[x y(x-y)]^{3}}{(x y)^{4}}$
$=\frac{x^{3} y^{3}(x-y)^{3}}{x^{4} y^{4}}$
$=\frac{(x-y)^{3}}{x y}$

Exponential Equations

Ex. 3. Solve for x. « to solve, need same (single) base on each side

$$
\text { a) } \begin{aligned}
& 8^{x}=16^{x-1} \\
&\left(2^{3}\right)^{x}=\left(2^{4}\right)^{x-1} \\
& 2^{3 x}=2^{4 x-4} \\
& \because \text { bases are } \\
& \text { equal } \\
& \therefore 3 x=4 x-4 \\
&-x=-4 \\
& x=4
\end{aligned}
$$

b) $3^{x^{2}+3}=81^{x}$
$3^{x^{2}+3}=\left(3^{4}\right)^{x}$
$3^{x^{2}+3}=3^{4 x}$
\because bases are
equal
$\therefore x^{2}+3=4 x$
$x^{2}-4 x+3=0$

$$
(x-3)(x-1)=0
$$

$$
\therefore x=3 \text { or } x=1
$$

$$
\begin{aligned}
& \text { c) } 2^{x+5}-2^{x+3}=192 \\
& 2^{x+3}\left(2^{2}-2^{0}\right)=192 \\
& 2^{x+3}(3)=\frac{192}{3} \\
& 3 \\
& 2^{x+3}=64 \\
& 2^{x+3}=2^{6} \\
& \because \text { bases are } \\
& \text { equal } \\
& \therefore x+3=6 \\
& x=3
\end{aligned}
$$

d) $2^{2 x}-12\left(2^{x}\right)+32=0$

$$
\left(2^{x}\right)^{2}-12\left(2^{x}\right)+32=0
$$

$$
\text { Let } y=2^{x}
$$

$$
y^{2}-12 y+32=0
$$

$$
\begin{aligned}
(y-8)(y-4) & =0 \\
& =4
\end{aligned}
$$

$$
\begin{array}{ll}
y=8 & \text { or } y=4 \\
2^{x}=2^{3} & \\
2^{x}=2^{2}
\end{array}
$$

$$
\because \text { bases are }
$$

equal

$$
\therefore x=3 \text { or } x=2
$$

Date:

5.2 Investigating the Graphs of Exponential Functions

$$
f(x)=b^{x} \boldsymbol{\&} f(x)=a(b)^{k(x-d)}+c
$$

I Graphing Exponential Functions of the Form $y=b^{x}$, where i) $b>1 \boldsymbol{\&}$ ii) $0<b<1$

Ex. 1. Complete the following table of values and graph the following exponential functions on the same axes.
i) $\quad b>1$
$\begin{array}{ll}\text { a) } y=2^{x} & \text { b) } y=3^{x}\end{array}$

x	y
-3	$\frac{1}{8}$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8

i)

x-intercept none
y - intercept
Domain $\{x \in \mathbb{R}\}$
Range $\{y \in \mathbb{R} \mid y>0\}$
Horizontal Asymptote is $y=0$ for $x \rightarrow-\infty$
Function is always increasing
\& concave up
ii)

$$
0<b<1
$$

a) $y=\left(\frac{1}{2}\right)^{x}$
b) $y=\left(\frac{1}{3}\right)^{x}$

x	y
-3	8
-2	4
-1	2
0	1
1	$\frac{1}{2}$
2	$\frac{1}{4}$
3	$\frac{1}{8}$

ii)

x-intercept hone
y - intercept \qquad
Domain $\{x \in \mathbb{R}\}$
Range $\{y \in \mathbb{R} \mid y>0\}$
Horizontal Asymptote is $y=0$ for $x \rightarrow+\infty$
Function is $\frac{\text { always decreasing }}{\varepsilon \text { concave up }}$

II Transformations on the Exponential Function $f(x)=b^{x}$, where $f(x)=a(b)^{k(x-d)}+c$

$(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)$

Ex. 2. Graph each of the following, by naming and applying transformations on an appropriate exponential function.
a) $y=\left(\frac{1}{3}\right)^{\frac{1}{2} x-1}-1 \rightarrow y=\left(\frac{1}{3}\right)^{\frac{1}{2}(x-2)}-1$

Transformations on $y=\left(\frac{1}{3}\right)^{x}$ are.
i) H.E. by a factor of 2
ii) H.T. 2 units right
iii) V.T 1 unit down

$$
(x, y) \rightarrow(2 x+2, y-1)
$$

$(-3,27) \rightarrow(-4,26)$
$(-2,9) \rightarrow(-2,8)$
$(-1,3) \rightarrow(0,2)$
$(0,1) \rightarrow(2,0)$
$\left(1, \frac{1}{3}\right) \rightarrow\left(4,-\frac{2}{3}\right)$
$\left(2, \frac{1}{9}\right) \rightarrow\left(6,-\frac{8}{9}\right)$
$\left(3, i_{7}^{2}\right) \rightarrow\left(8,-\frac{26}{27}\right)$
Horizontal Asymptote: $\quad y=-1$
Domain : $\{x \in \mathbb{R}\}$
Range: $-\{y \in \mathbb{R} \mid y>-1\}$
y-intercept : __2
\boldsymbol{x} - intercept : \qquad
b) $f(x)=-\frac{1}{2}(3)^{-x-3}+13 \rightarrow f(x)=-\frac{1}{2}(3)^{-(x+3)}+13$ Transformations on $y=3^{x}$ are:
i) $V_{0} R$. in x-axis
ii) V.C. by a factor of $\frac{1}{2}$
iii) H.R in y-axis
iv) H.T. Bunits left
v) V.T. 13 whits up $\left.(x, y) \rightarrow \underset{y}{(-x-3},-\frac{1}{2} y+13\right)$

$\left(-3, \frac{1}{27}\right) \rightarrow\left(0,12 \frac{53}{34}\right)$
$\left(-2, \frac{1}{9}\right) \rightarrow\left(-1,12 \frac{17}{18}\right) \quad 3^{-x-3}=26$
$\left(-1, \frac{1}{3}\right) \rightarrow\left(-2,12 \frac{5}{6}\right)$
$(0,1) \rightarrow\left(-3,12 \frac{1}{2}\right)$
$(1,3) \rightarrow\left(-4,11, \frac{1}{2}\right)$
$(2,9) \rightarrow\left(-5,8 \frac{1}{2}\right)$
$(3,27) \rightarrow\left(-6,-\frac{1}{2}\right)$
Horizontal Asymptote: $y=13$
Domain : $\{x \in \mathbb{R}\}$
Range:

\boldsymbol{y}-intercept : \qquad
x - intercept $: \doteq-5 \frac{29}{30} \doteq-5.967$

Exponential growth or decay occurs when quantities increase or decrease at a rate proportional to the initial quantity present. This growth or decay occurs in savings accounts, the size of populations, appreciation, depreciation, and with radioactive chemicals. All problems of this type can be modeled by the exponential function
i) $y=a \cdot b^{x}$ where

- y is the final amount or number
- a is the initial amount or number
- b is the growth or decay factor
- x is the number of growth or decay periods
or
ii) $A=A_{0}(1 \pm r)^{n}$ where
- A is the final amount or number
- A_{0} is the initial amount or number
- r is the growth or decay rate
- n is the number of growth or decay periods

Ex. 1. An antique vase was purchased in 1980 for $\$ 8000$. If the vase appreciates in value by 6% per year, what is its estimated value in the year 2015, to the nearest hundred dollar?
Let V represent the value of the vase, in $\$, t$ years after 1980.

$$
\begin{aligned}
& V=V_{0}(1+r)^{t} \\
& V=8000(1.06)^{t}
\end{aligned}
$$

Find V if $t=35$:

$$
V=8000(1.06)^{35}
$$

$$
V \doteq 61500
$$

\therefore in 2015, the vase is worth approx \$b1500.

Ex. 2. A car depreciates by 15% per year. If you buy a car for $\$ 20000$, find the value of the car in three years to the nearest hundred dollar and estimate when the car will be worth half of its original value.
Let V represent the value of the car, in \$, after t years

$$
\begin{aligned}
& \qquad \begin{array}{l}
V=V_{0}(1-r)^{t} \\
V=20000(0.85)^{t} \\
\text { Find } V \text { if } t=3: \\
\qquad V=20000(0.85)^{3} \\
V \doteq 12300
\end{array} \\
& \therefore \text { In } 3 \text { years, the car is } \\
& \text { worth approx. } \$ 12300 .
\end{aligned}
$$

Ex. 3. The population of a town was 24000 in 1980 and 29000 in 1990.
a) Determine the annual growth rate for the town during this period.
b) Determine an expression for the population, P, at time t years after 1980 .
c) Use this expression to estimate the population of the town in 2012.
a) Let Prepresent the population of the town, tyears after 1980

$$
\begin{aligned}
& P=P_{0}(1+r)^{t} \\
& P=24000(1+r)^{t}
\end{aligned}
$$

b) $P=24000(1.019)^{t}$

$$
\begin{aligned}
\text { Find } r & \text { if } t=10, P=29000 \\
29000 & =24000(1+r)^{10} \\
\frac{29}{24} & =(1+r)^{10} \\
\sqrt[10]{\frac{29}{24}} & =1+r \\
r & =\sqrt[10]{\frac{29}{24}}-1 \\
r & =0.019
\end{aligned}
$$

\therefore The annual growth rate is approx. 1.9%
c) Find P if $t=32$

$$
\begin{aligned}
& P=24000(1.019)^{32} \\
& P=44000
\end{aligned}
$$

\therefore in 2012 the population is approx. 44000.

Ex. 4. The population of the world was 6 billion in 1999. This population is growing exponentially and doubles every 51 years. Estimate the world population in $20 \sqcap$
Let P represent the world population in billions, t years after 1999

$$
\begin{aligned}
& P=P_{0}(2)^{\frac{t}{d} \leftarrow \text { doubling period (5l years) }} \\
& P=b(2)^{\frac{t}{s i}}
\end{aligned}
$$

Find P if $t=18$

$$
\begin{aligned}
& P=6(2)^{\left(\frac{18}{51}\right)} \\
& P \doteq 7.7
\end{aligned}
$$

\therefore in 2017 the world population is approx 7.7 billion

Ex. 5. A hospital uses cobalt- 60 in its radiotherapy treatment for cancer patients. Cobalt- 60 has a half-life of 5.2 years. This means that every 5.2 years, 50% of the original sample of cobalt- 60 has decayed. The hospital has 80 g of cobalt-60.
How much of the original sample will there be after 1 year to the nearest gram?

$$
\begin{aligned}
& M=M_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}<\text { hollf-life t }} 5.2 \text { years } \\
& M=80\left(\frac{1}{2}\right)^{5.2}
\end{aligned}
$$

$$
\text { Find } M \text { if } t=1
$$

$$
\begin{aligned}
& M=80\left(\frac{1}{2}\right)^{5,2} \quad \therefore \text { after one year, ap } \\
& M \doteq 70 \quad 70 \mathrm{~g} \text { remains. }
\end{aligned}
$$

Ex. 6. The isotope, radioactive strontium-90, decays to 25% of its original mass after approximately 58 years. Determine its half-life.

Let h represent the half-life, in years.

$$
\begin{aligned}
& M=M_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}} \\
& 25=100\left(\frac{1}{2}\right)^{\frac{t}{h}}
\end{aligned}
$$

Find h if $t=58$:

$$
25=100\left(\frac{1}{2}\right)^{\frac{58}{h}}
$$

$$
\frac{1}{4}=\left(\frac{1}{2}\right)^{\frac{58}{h}}
$$

$\therefore \therefore 2=\frac{58}{h}$

$$
\begin{aligned}
& \left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{\frac{58}{4}} \\
& \because \text { bases are }
\end{aligned}
$$

$$
2 h=58
$$

$$
h=29
$$

\therefore its half life is 29 years equal.
was unearthed. It was later
$\frac{1}{\sqrt{8}}$ of its original amount.
If carbon -14 has a half-life of 5730 years, how old is the skeleton?
Let No represent the initial amount of carbon-14. Let t represent the age of the skeleton, in years

$$
\begin{array}{r}
\frac{1}{\sqrt{8} A_{0}^{\prime}}=A_{0}^{\prime}\left(\frac{1}{2}\right)^{\frac{t}{h}} \\
\text { Find } t \text { if } h=5730 \\
\frac{1}{\sqrt{8}}=\left(\frac{1}{2}\right)^{\frac{t}{5730}} \\
\left(\frac{1}{2}\right)^{\frac{3}{2}}=\left(\frac{1}{2}\right)^{\frac{t}{5730}} \\
\because \text { bases are } \\
\text { equal }
\end{array}
$$

\therefore the stele ton is 8595 years old

Ex. 1. Rewrite each expression as the sum and/or difference of terms, where each term is of the form $a x^{n}$.

$$
\begin{array}{ll}
\text { a) } \begin{array}{ll}
\frac{4 x^{5}-5 x^{4}+6 x-2}{2 x^{4}} & \text { b) } \begin{array}{l}
\frac{8 x^{3}-27}{2 x-3} \\
= \\
=\frac{4 x^{5}}{2 x^{4}}-\frac{5 x^{4}}{2 x^{4}}+\frac{6 x}{2 x^{4}}-\frac{2 x^{0}}{2 x^{4}} \\
= \\
=2 x^{1}-\frac{5}{2} x^{0}+3 x^{-3}-x^{-4}
\end{array} \\
=\frac{\left(2 x^{1}-3\right)\left(4 x^{2}+6 x+9\right)}{2 x-3} \\
=2 x-\frac{5}{2}+3 x^{-3}-x^{-4} & =4 x^{2}+6 x^{1}+9 x^{0}
\end{array},
\end{array}
$$

c) $\frac{2}{\sqrt{x^{3}}}+\frac{x}{\sqrt{3}}+6 \sqrt[3]{x}-\left(\frac{1}{3 x}\right)^{2}$
d) $\frac{1}{\sqrt{x}}\left(\sqrt{x}+\frac{1}{x}\right)^{2}$
$=2 x^{-\frac{3}{2}}+\frac{1}{\sqrt{3}} x^{1}+6 x^{\frac{1}{3}}-\frac{1}{9} \cdot \frac{1}{x^{2}}$
$=x^{-\frac{1}{2}}\left(x^{\frac{1}{2}}+x^{-1}\right)\left(x^{\frac{1}{2}}+x^{-1}\right)$
$=2 x^{-\frac{3}{2}}+\frac{1}{\sqrt{3}} x^{1}+6 x^{\frac{1}{3}}-\frac{1}{9} x^{-2}$

$$
=x^{-\frac{1}{2}}\left(x^{\prime}+2 x^{-\frac{1}{2}}+x^{-2}\right)
$$

$$
=1 x^{\frac{1}{2}}+2 x^{-1}+1 x^{-\frac{5}{2}}
$$

$$
\begin{aligned}
& \text { e) }\left(\frac{(x-3)}{2 \sqrt[3]{x^{2}}}\right)^{3} \\
&= \frac{(x-3)(x-3)(x-3)}{8\left(x^{\frac{2}{3}}\right)^{3}} \\
&=\frac{\left(x^{2}-6 x+9\right)(x-3)}{8 x^{2}}=\frac{x-16}{4 \sqrt{x}+x} \\
&=\frac{x^{3}-6 x^{2}+9 x-3 x^{2}+18 x-27}{8 x^{2}}=\frac{\left(x^{\frac{1}{2}}-4\right)(x}{4 x^{\frac{1}{2}}+x} \\
&=\frac{1 x^{3}}{8 x^{2}}-\frac{9 x^{2}}{8 x^{2}}+\frac{27 x^{1}}{8 x^{2}}-\frac{27 x^{\circ}}{8 x^{2}}=\frac{\left(x^{\frac{1}{2}}-4\right)(x}{x^{\frac{1}{2}}(4+} \\
&=\frac{1}{8} x^{1}-\frac{9}{8} x^{0}+\frac{27}{8} x^{-1}-\frac{27}{8} x^{-2} \\
&=\frac{1 x^{\frac{1}{2}}}{x^{\frac{1}{2}}}-\frac{4 x}{x^{\frac{1}{2}}} \\
&=
\end{aligned}
$$

Ex. 2. Completely factor each of the following expressions.
a) $-2 t(1-t)^{4}+4 t^{2}(1-t)^{3}$
b) $10(2 x+1)^{4}(3 x+2)^{4}+12(2 x+1)^{3}(3 x+2)^{5}$

$$
\begin{aligned}
& =-2 t(1-t)^{3}[(1-t)-2 t] \\
& =-2 t(1-t)^{3}(1-3 t)
\end{aligned}
$$

$$
=2(2 x+1)^{3}(3 x+2)^{4}[5(2 x+1)+6(3 x+2)]
$$

may need

$$
\text { c) } \begin{aligned}
& 12 x\left(2 x^{2}-1\right)^{2}\left(x^{2}-2\right)^{-2}-4 x\left(x^{2}-2\right)^{-3}\left(2 x^{2}-1\right)^{3} \\
= & 4 x\left(2 x^{2}-1\right)^{2}\left(x^{2}-2\right)^{-3}\left[3\left(x^{2}-2\right)-\left(2 x^{2}-1\right)\right] \\
= & 4 x\left(2 x^{2}-1\right)^{2}\left(x^{2}-2\right)^{-3}\left(3 x^{2}-6-2 x^{2}+1\right) \\
= & 4 x\left(2 x^{2}-1\right)^{2}\left(x^{2}-2\right)^{-3}\left(x^{2}-5\right) \\
= & \frac{4 x\left(2 x^{2}-1\right)^{2}\left(x^{2}-5\right)}{\left(x^{2}-2\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
-\frac{1}{2 \sqrt{1-t} \cdot \sqrt{1+t}}-\frac{1 \sqrt{1-t}}{2 \sqrt{(1+t)^{3}}} \\
=-\frac{1}{2}(1-t)^{-\frac{1}{2}}(1+t)^{-\frac{1}{2}}-\frac{1}{2}(1-t)^{\frac{1}{2}}(1+t)^{\frac{-3}{2}} \\
=-\frac{1}{2}(1-t)^{-\frac{1}{2}}(1+t)^{-\frac{3}{2}}[(1+t)+(1-t)] \\
=-\frac{1}{2}(1-t)^{-\frac{1}{2}}(1+t)^{-\frac{3}{2}}\left(\frac{1}{2}\right) \\
=-1(1-t)^{-\frac{1}{2}}(1+t)^{-\frac{3}{2}} \\
=\frac{1}{\sqrt{1-t} \sqrt{(1+t)^{3}}}
\end{array} .
\end{aligned}
$$

Date:
$f(x)=-e^{-(x-3)}+1$ Unit 5 Test Review

1. Sketch the graph of $f(x)=-e^{-x+3}+1$ by naming and applying transformations on an appropriate function. Determine the x and y-intercepts algebraically and mark these points on the graph.
The transformations on $y=e^{x}$ are:
i) \qquad
ii)

$$
\begin{aligned}
& \text { Fory-1nt: } \\
& \begin{aligned}
f(0) & =-e^{-(0)} \\
& =-e^{3}+1 \\
& =-19
\end{aligned}
\end{aligned}
$$

iii)

iv)

For x-int:
$0=-e^{-x+3}+1$
$-x+3$ $e^{-x+3}=1$
$e^{-x+3}=e^{0}$

2. Solve each of the following.

$$
\text { a) } \left.\begin{array}{rl}
3^{x}-3^{x-1} & =\frac{2}{\sqrt{27}} \\
3^{x}-3^{x-1} & =2(27)^{-\frac{1}{2}} \\
3^{x}-3^{x-1} & =2(3)^{-\frac{3}{2}} \\
\frac{3^{x-1}(3-1)}{21} & =\frac{1}{2}\left(3^{-\frac{3}{2}}\right. \\
x_{1}
\end{array}\right] \text { 3} \begin{aligned}
& x-1=3^{-\frac{3}{2}} \\
& \because \text { bases are equal } \\
& x-1=-\frac{3}{2} \\
& x=-\frac{1}{2}
\end{aligned}
$$

b) $e^{2 x}+2 e^{x}=3$
$\left(e^{x}\right)^{2}+2\left(e^{x}\right)-3=0$

$$
y^{2}+2 y-3=0
$$

$$
(y+3)(y-1)=0
$$

a) $\frac{2^{-22}-2^{-23}}{2^{-25}+2^{-24}} \cdot \frac{2^{25}}{2^{25}}$

$$
\begin{array}{ccc}
y+3=0 & y-1=0 \\
y=-3 & y=1 \\
e^{x}=-3 & e^{x}=1 \\
n 0 \text { solution } & e^{x}=e^{0} \\
e^{x}>0 \text { for all } & \because \text { bases are equal } \\
3^{n+1} \times 9^{n-4} & & \therefore x=0
\end{array}
$$

b) $\frac{3^{n+1} \times 9^{n-4}}{27^{n-2}}$
$=\frac{3^{n+1} \times\left(3^{2}\right)^{n-4}}{\left(3^{3}\right)^{n-2}}$
$=\frac{2^{3}-2^{2}}{2^{0}+2^{1}} \quad$ or $=\frac{2^{-23}\left(2^{1}-1\right)}{2^{-25}\left(1+2^{1}\right)}$
$=\frac{8-4}{1+2}$
$=2^{2} \cdot \frac{1}{3}$

$$
=\frac{\left[3^{n+1} \times 3^{2 n-8}\right]}{\left(3^{3 n-6}\right)}
$$

$=\frac{4}{3}$
$=\frac{4}{3}$

$$
=\frac{3^{3 n-7}}{3^{3 n-6}}
$$

4. Completely factor the following expression.

$$
=3^{-1}
$$

$$
\begin{aligned}
& -16(1-4 x)^{3}\left(x^{2}-1\right)^{-3}-6 x\left(x^{2}-1\right)^{-4}(1-4 x)^{4} \quad=\frac{1}{3} \\
= & -2(1-4 x)^{3}\left(x^{2}-1\right)^{-4}\left[8\left(x^{2}-1\right)+3 x(1-4 x)\right] \\
= & -2(1-4 x)^{3}\left(x^{2}-1\right)^{-4}\left(-4 x^{2}+3 x-8\right) \text { expand s. collect like } \\
= & \frac{2(1-4 x)^{3}\left(4 x^{2}-3 x+8\right)}{\left(x^{2}-1\right)^{4}} \quad \text { factor out }-1 .
\end{aligned}
$$

5. Rewrite each expression as the sum and/or difference of terms, where each term is of the form $a x^{n}$.
a) $\sqrt{\frac{\sqrt[3]{x} \cdot \sqrt[3]{x^{2}}}{\sqrt{x}}}$
b) $\frac{x-4}{x^{\frac{1}{2}}+2}$
c) $\frac{x^{3}+8}{\sqrt{x^{3}}+2 \sqrt{x}}$
$=\left(\frac{x^{\frac{1}{3}} \cdot x^{\frac{2}{3}}}{x^{\frac{1}{2}}}\right)^{\frac{1}{2}}$
$=\frac{\left(x^{\frac{1}{2}}\right)^{2}-(2)^{2}}{x^{\frac{1}{2}}+2}$
$=\frac{(x+2)\left(x^{2}-2 x+4\right)}{x^{\frac{3}{2}}+2 x^{\frac{1}{2}}}$
$=\left(\frac{x^{1}}{x^{\frac{1}{2}}}\right)^{\frac{1}{2}}$
$=\frac{\left(x^{\frac{1}{2}}-2\right)\left(x^{\frac{1}{3}}+2\right)}{x^{\frac{1}{2}}+2}$
$=\frac{(x+2)\left(x^{2}-2 x+4\right)}{x^{\frac{1}{2}}(x+2)}$
$=\left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}$
$=x^{\frac{1}{2}}-2 x^{0}$

$$
\begin{aligned}
& =\frac{x^{2}}{x^{\frac{1}{2}}}-\frac{2 x^{1}}{x^{\frac{1}{2}}}+\frac{4 x^{0}}{x^{\frac{1}{2}}} \\
& =x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}
\end{aligned}
$$

6. Joe's parents invested $\$ 4000$ in an account when he was born. The account pays interest at $6 \% /$ a, compounded quarterly. How much money will be in the account on Joe's $18^{\text {th }}$ birthday?

Let Arepresent the amount of money, in $\$$, on Joe'S $18^{\text {th }}$

7. One bacterium divides into two bacteria every 5 days. Initially, there are 15 bacteria.
a) How many bacteria will there be in 10 days?

There will be 60 bacteria in 10 days. 5 days: $15 \times 2=30$
10 days: $30 \times 2=60$
b) What is the approximate growth rate per day? Let r represent the growth rate
per day.
$P=P_{0}(1+r)^{t}$

$$
\begin{gathered}
P=P_{0}(1+r)^{t} \\
60=15(1+r)^{10} \\
4=(1+r)^{10} \\
10 \sqrt{4}-1=r \\
r=0.15
\end{gathered}
$$

$$
4=(1+r)^{10} \quad \therefore \text { the approx }
$$

8. A small self-contained forest was studied for squirrel population by a biologist. It was found that the forest population, P, was a function of time, t, where t was measured in weeks.
The function was $P=\frac{20}{1+3 e^{-0.02 t}}$.
a) Find the population at the start of the study and after one year.

$$
\begin{array}{ll}
\text { If } t=0: & \text { If } t=52: \\
P=\frac{20}{1+3 e^{-0.020)}} & P=\frac{20}{1+3 e^{-0.02(52)}} \\
=\frac{20}{1+3(1)}=\frac{20}{4}=5 & P=\frac{20}{1+3 e^{-1.04}} \doteq 9.7
\end{array}
$$

b) The largest population the forest can sustain is represented mathematically by looking at the end behaviour of the function, P, specifically as $t \rightarrow \infty$.
Determine the largest squirrel population the forest can sustain.

$$
\begin{aligned}
& P=\frac{20}{1+3 \cdot \frac{1}{e^{0.02 t}}} \quad \text { As } t \rightarrow \infty, \frac{1}{e^{0.02 t}} \rightarrow 0 \\
& \therefore . P \rightarrow \frac{20}{1+3(0)}, \text { so } P \rightarrow 20 \\
& \\
& \text { HW. Unit } 5 \text { Review Exercise }
\end{aligned}
$$

