UNIT 6: LOGARITHMIC FUNCTIONS \& LOGARITHMS

6.1 The Logarithmic Function

The logarithmic function $y=\log _{b} x$ is the inverse of the exponential function $y=b^{x}$. Read $y=\log _{b} x$ as " y is the logarithm of x to the base b ".

1. Graph a) $y=2^{x}$ and its inverse \& b) $y=\left(\frac{1}{2}\right)^{x}$ and its inverse on the grids below.
a)

b)

Logarithmic Form

$y=\log _{b} x$
$b>0$ and $b \neq 1$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

Properties of the Logarithmic Function $y=\log _{b} x$

- The base b is positive.
- The x-intercept is 1 .
- The y-axis is a vertical asymptote.
- The domain is the set of positive real numbers.
- The range is the set of all real numbers.
- The function is increasing if $b>1$.
- The function is decreasing if $0<b<1$.

If $\log _{b} x=\log _{b} y$ then $x=y$, since bases are equal.

John Napier
(1550-1617)
Scottish mathematician John Napier invented logarithms. The word logarithm is composed of the two words logic and arithmetic. Napier did not develop the natural logarithmic function, but it is occasionally called the Napierian logarithm, in his honour.

Exponential Form

$x=b^{y}$
\longleftrightarrow

Logarithmic Form

$y=\log _{b} x \quad b>0$ and $b \neq 1$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

Note: $\log x=\log _{10} x$ and $\ln x=\log _{e} x$
Ex. 1. Change to exponential form.
a) $\log _{2} 16=4$
b) $\log _{9} 3=\frac{1}{2}$
c) $\log \left(\frac{1}{100}\right)=-2$

Ex. 2. Change to logarithmic form.
a) $3^{2}=9$
b) $e^{0}=1$
c) $49^{\frac{1}{2}}=7$

Ex. 3. Use your calculator to find the value of the following:
a) $\log _{10} 1000$
b) $\log 500$
c) $\ln 0.5$

Ex. 4. Simplify
a) $\log _{a} 1=$
ie. i) $\log _{2} 1=$
ii) $\log _{0.5} 1=$
b) $\log _{a} a^{x}=$
ie. i) $\log _{3} 3^{4}=$
ii) $\log _{5} 5^{\sqrt{2}}=$
c) $a^{\log _{a} x}=$
ie. i) $10^{\log 0.5}=$
ii) $4^{\log _{4} 5}=$

Ex. 5. Evaluate each of the following.
a) $\log _{5} 25$
b) $\log _{3} 27$
c) $\log _{2}\left(\frac{1}{4}\right)$
d) $\log _{\frac{1}{3}} \sqrt[4]{27}$

$$
\begin{gathered}
\text { Exponential Form } \\
x=b^{y}
\end{gathered} \longleftrightarrow \begin{gathered}
\text { Logarithmic Form } \\
y=\log _{b} x
\end{gathered} \quad b>0 \text { and } b \neq 1
$$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

Ex. 6. Solve for x.
a) $\log _{2} x=8$
b) $\log _{9} 3 \sqrt{3}=x$
c) $\log _{2} \sqrt[3]{2}=x$
d) $\log _{x} 4=\frac{1}{2}$
e) $\log _{x} 81=\frac{4}{5}$
f) $e^{\ln 10}=x$
\qquad

6.2 Logarithmic Properties, Laws \& Transformations

Recall:

$$
\begin{gathered}
\text { Exponential Form } \\
x=b^{y}
\end{gathered} \longleftrightarrow \begin{gathered}
\text { Logarithmic Form } \\
y=\log _{b} x
\end{gathered} \quad b>0 \text { and } b \neq 1
$$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.
Properties of Logarithms: i) $\log _{a} 1=$
ii) $\log _{a} a=$
iii) $\log _{a} a^{x}=$
*iv) $a^{\log _{a} x}=$

Exponent Laws:

1. $a^{m} \cdot a^{n}=\quad$ multiplication
2. $a^{m} \div a^{n}=$
3. $\left(a^{m}\right)^{n}=$

Note: We will prove logarithm properties and laws marked with $a *$.
Ex. 1. Use the properties of logarithms to write each of the following as a sum and/or a difference and/or multiple of logarithms.
a) $\log _{7}(5 x)$
b) $\log _{3}\left(\frac{a b}{c d}\right)$
c) $\log _{8} \sqrt[4]{m}$

Ex. 2. Express as a single logarithm and evaluate.
a) $\log _{4} 192-\log _{4} 3$
b) $\log _{8} 6-\log _{8} 3+\log _{8} 4$
c) $2 \log _{4} 8$

Ex. 3. Evaluate exactly.
а) $\log \sqrt[4]{1000}$
b) $3^{-\frac{1}{2} \log _{3} 49}$

Ex. 4. Solve to two decimal places, using logarithms.
a) $3^{x}=11$
b) $4\left(7^{x-2}\right)=8$

Transformations on the Logarithmic Function $f(x)=\log _{b} x$, where $f(x)=a \log _{b}[k(x-d)]+c$

$(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)$
Ex. 2. Use the properties of logarithms to write each of the following logarithmic functions as a sum and/or a difference and/or multiple of logarithms. Then, graph, by naming and applying transformations on the indicated parent logarithmic function.
a) $y=\log _{2}\left(4 x^{2}\right)$
b) $y=\log _{3}\left(\frac{x}{3}\right)^{3}$

Transformations on $y=\log _{2} x$ are:
i) \qquad
ii) \qquad

Vertical Asymptote:

\qquad

Domain :

\qquad

Range:

\qquad
y-intercept : \qquad
x-intercept : \qquad

Transformations on $y=\log _{3} x$ are:
i) \qquad
ii) \qquad

Vertical Asymptote: \qquad
Domain : \qquad

Range:

\qquad
y-intercept : \qquad
x - intercept : \qquad

Recall:
Exponential Form Logarithmic Form

$b>0$ and $b \neq 1$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

1. Prove $a^{\log _{a} x}=x$.
2. Prove $\log _{a}(x \cdot y)=\log _{a} x+\log _{a} y$.
3. Prove $\log _{a} x^{n}=n \log _{a} x$.
4. Prove $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$.

6.3 Solving Logarithmic Equations

Recall:

$$
\begin{array}{ccc}
\text { Exponential Form } \\
x=b^{y}
\end{array} \longleftrightarrow \begin{gathered}
\text { Logarithmic Form } \\
y=\log _{b} x
\end{gathered} \quad b>0 \text { and } b \neq 1
$$

The logarithm of a number x with a given base is the exponent to which that base must be raised to yield x.

Properties of Logarithms:
i) $\log _{a} 1=$
ii) $\log _{a} a=$
iii) $\log _{a} a^{x}=$
iv) $a^{\log _{a} x}=$

Logarithm Laws: 1. $\log _{a}(x \cdot y)=$

$$
\begin{array}{ll}
a, x, y>0 & \text { 2. } \log _{a}\left(\frac{x}{y}\right)=
\end{array}
$$

3. $\log _{a} x^{n}=$
multiplication

division

power

Ex. 1. Solve and check each of the following.
a) $\log _{6} x=2$
b) $4 \log _{6} x=\log _{6} 625$
c) $2 \log x=\log 8+\log 2$
d) $\log _{8}(2-x)+\log _{8}(4-x)=1$
e) $\log _{2}(x+1)-\log _{2}(x-1)=1$
f) $3^{x}=23$

Ex. 2. On bright sunny days, the amount of bromine in a municipal swimming pool decreases by 10% each hour. If there were 145 g of bromine in the pool at noon on a sunny day, when would the pool contain 102 g ?

Ex. 3. The half-life of a radioactive substance is 23 days. How long is it until the percent remaining is 10% ?

Ex. 4. Solve $3^{2 x}-3^{x}-12=0$.

Ex. 1. Determine the value of each of the following logarithms, correct to two decimal places.
a) $\log _{4} 120$
b) $\log _{1} 11$
$\overline{3}$

Change of Base Formulas	
i) $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$	ii) $\log _{b} x=\frac{1}{\log _{x} b}$

i) Proof:

ii) Proof:

Ex. 2. In each of the following, use the change of base formula to express the given logarithm in terms of the base b, and then use a calculator to evaluate to three decimal places.
a) $\log _{\sqrt{2}} 20, b=10$
b) $3 \log _{4} 0.4, b=e$

Ex. 3. Simplify to a single logarithm and evaluate.
a) $\frac{\log _{5} 8}{\log _{5} 2}$
b) $\frac{\log _{\sqrt{2}} \sqrt{243}}{\log _{\sqrt{2}} 3}$

Ex. 4. Show that $\frac{1}{\log _{8} a}-\frac{1}{\log _{2} a}=\frac{1}{\log _{4} a}$.

Recall: Transformations on the Logarithmic Function $f(x)=\log _{b} x$, where

$$
f(x)=a \log _{b}[k(x-d)]+c \quad \boldsymbol{\&} \quad(x, y) \rightarrow\left(\frac{1}{k} x+d, a y+c\right)
$$

Ex. 5. Graph $y=-2 \log _{\frac{1}{3}}(-x+5)$ by naming and applying transformations on $y=\log _{\frac{1}{3}} x$. Clearly label the equation of the asymptote, state the domain and range of the function and determine any intercepts.

Date: \qquad

The truth about "e"... Euler's amazing death-defying constant

The letter \boldsymbol{e} honours the Swiss mathematician Leonard Euler (1707-1783), whose last name is pronounced oiler. Euler also developed the symbols π and i.

Two definitions of \boldsymbol{e} are as follows:

First Definition of e

$\left(1+\frac{1}{x}\right)^{x} \rightarrow e$, as $x \rightarrow \infty$
Let $y=\left(1+\frac{1}{x}\right)^{x}$ and graph.

\boldsymbol{x}	$y=\left(1+\frac{1}{x}\right)^{x}$
1	2
2	2.25
3	2.3703
\ldots	\ldots
100	
1000	2.7169
100000	

In both the table and graph , as $x \rightarrow \infty, y \rightarrow e$.

Ex. 1. Graph $y=e^{x}$ and its inverse on the same grid.

Second Definition of e

 $(1+x)^{\frac{1}{x}} \rightarrow e$, as $x \rightarrow 0$Let $y=(1+x)^{\frac{1}{x}}$ and graph.

\boldsymbol{x}	$y=(1+x)^{\frac{1}{x}}$
-1.0	undefined
-0.1	
-0.01	2.7320
-0.001	2.7196
-0.0001	2.7184
0	Undefined
0.00001	
0.0001	2.7181
0.001	2.7169
0.01	2.7048
0.1	2.5937
1.0	2.0

In both the table and graph, as $x \rightarrow 0, y \rightarrow e$.

Ex. 2. Sketch $f(x)=\ln (-x+3)$. State the domain, range and exact values of any intercepts.

Recall:

Properties of Natural Logarithms: i) $\ln 1=$
ii) $\ln e=$
iii) $\ln e^{x}=$
iv) $e^{\ln x}=$

Natural Logarithm Laws: 1. $\ln (x \cdot y)=$
multiplication

$$
\begin{array}{ll}
x, y>0 & \text { 2. } \ln \left(\frac{x}{y}\right)=
\end{array}
$$

division
3. $\ln x^{n}=$
power
Ex. 3. Use the properties of logarithms to write each expression as a sum, difference, and/or multiple of logarithms.
a) $\ln \left[\frac{x^{3}(x-2)^{4}}{\sqrt{x^{2}+1}}\right]$
b) $\ln \cot \theta$

Ex. 4. Evaluate each of the following.
a) $e^{-2 \ln 3}$
b) $\ln e^{\sin ^{2} x+\cos ^{2} x}$

Ex. 5. Solve each of the following.
a) $-e^{-t}+3 e^{-3 t}=0$
b) $(\ln x)^{2}+\ln x^{2}=0$

Logarithmic scales are useful for measuring quantities that can have a very large range, because logarithms enable us to make large or small numbers more manageable to work with.

Examples of logarithmic scales include the Richter scale, which measures earthquakes, the decibel scale, which measures sound, and the $\mathbf{p H}$ scale, which measures acidity.

Logarithms and Earthquakes

The formula Richter used to define the magnitude of an earthquake is

$$
M=\log \left(\frac{I}{I_{0}}\right), \text { where }
$$

I is the intensity of the earthquake being measured,
I_{0} is the intensity of a reference earthquake, and
M is the Richter number used to measure the intensity of earthquakes.

On the Richter scale, the energy of the earthquake increases by powers of 10 in relation to the Richter magnitude number. Earthquakes below magnitude 4 usually cause no damage, and quakes below 2 cannot be felt. A magnitude 6 earthquake is strong, while one of magnitude 7 or higher causes major damage.

Ex. 1. An earthquake of magnitude 7.5 on the Richter scale struck Guatemala on February 4, 1976, killing 23000 people. On October 2, 1993, an earthquake of magnitude 6.4 killed 20000 in Maharashtra, India. Compare the intensities of the two earthquakes.

Logarithms and Sound

The formula used to compare sounds is

$$
L=10 \log \left(\frac{I}{I_{0}}\right), \text { where }
$$

I is the intensity of the sound being measured, I_{0} is the intensity of a sound at the threshold of hearing, and L is the loudness measured in decibels.

The loudness of any sound is measured relative to the loudness of sound at the threshold of hearing. Sounds at this level are the softest that can still be heard. At the threshold of hearing, the loudness of sound is zero decibels (0 dB).

Ex. 2. A sound is 1000 times more intense than a sound you can just hear. What is the measure of its loudness in decibels?

Exposure to sound levels of 85 dB during a 35 h work week will eventually cause damage to most ears. The 120 dB volume of the average rock concert will cause the same damage in less than half an hour. The higher the level, the less time it takes before sound-receptor cells start dying and permanent hearing damage occurs. At sound levels of 130 dB , after 75 s you are at risk of suffering permanent damage to your hearing.

Ex. 3. How many more times intense is the sound of normal conversation (60 dB) than the sound of a whisper (30 dB)?

Logarithms and Chemistry

Chemists define the acidity of a liquid on a pH scale,

$$
p H=-\log \left[H^{+}\right], \text {where }
$$

[H^{+}] is the concentration of the hydrogen ion in moles per litre.
A solution with a $p H$ lower than 7 is acidic.
A solution with a pH equal to 7 is distilled water.
A solution with a pH greater than 7 is basic.

Ex. 4. Find the $p H$ of a swimming pool with a hydrogen ion concentration of $6.1 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$ (pH is given to two decimal places.)

Ex. 5. The $p H$ of a fruit juice is 3.10. What is the hydrogen ion concentration of the fruit juice?

