COMPOSITE FUNCTIONS

Definition of a Composite Function

For two functions f and g, the composite function $f(g(x))$ is formed by evaluating f at g. This new composite function $f \circ g$, is called the composition of \boldsymbol{f} and \boldsymbol{g}, and is defined by $(f \circ g)(x)=f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. Let $f=\{(3,2),(5,1),(7,4),(9,3),(11,5)\}$ and $g=\{(1,3),(2,5),(3,7),(4,9),(5,6)\}$. Determine

$$
\begin{array}{lll}
\text { a) }(f \circ g)(3) & \text { b) }(g \circ f)(3) & \text { c) }(f \circ f)(9)
\end{array}
$$

Ex. 2. If $f(x)=\sqrt{x}, g(x)=x+5$ and $h(x)=x^{2}-\frac{1}{x}$, find each of the following:
a) $(f \circ g)(4)$
b) $(g \circ f)(4)$
c) $(h \circ f \circ g)(-5)$
$=f(g(4))$
$=g(f(4))$
$=h(f(g(-5)))$
$=f(9)$
$=g(2)$
$=7$.
$=h(f(0))$
$=\sqrt{9}$
$=3$
d.n.e or undefined

$$
\begin{aligned}
\text { d) } & (f \circ g)(x) \\
= & f(g(x)) \\
= & f(x+5) \\
\therefore(f \circ g)(x)= & \sqrt{x+5}
\end{aligned}
$$

e) $g \circ f$
$=g(f(x))$
$=g(\sqrt{x})$
$=\sqrt{x}+5$

$$
)
$$

$$
\begin{aligned}
& =\sqrt{x}+5
\end{aligned}
$$

$$
\begin{aligned}
& * * * \\
&(x+5)^{3}=(x+5)(x+5)(x+5) \\
&=(x+5)\left(x^{2}+10 x+25\right) \\
&=x^{3}+15 x^{2}+75 x+125
\end{aligned}
$$

$$
\begin{aligned}
& \text { f) } h \circ g \\
& =h(g(x)) \\
& =h(x+5) \\
& =(x+5)^{2}-\frac{1}{x+5} \\
& \frac{\text { or }}{=} \frac{(x+5)^{3}-1}{x+5} \\
& =\frac{x^{3}+15 x^{2}+75 x+124}{x+5}
\end{aligned}
$$

Recall: $f(x)=\sqrt{x}, g(x)=x+5$ and $h(x)=x^{2}-\frac{1}{x}$

$$
\sqrt{x+5}=\sqrt{x}+5
$$

square both sides
$x+5=(\sqrt{x}+5)(\sqrt{x}+5)$
$x+5=x+10 \sqrt{x}+25$
$-20=10 \sqrt{x}$
$-2=\sqrt{x}$
square both sides

$$
4=x
$$

$$
\begin{aligned}
& (x+5)^{2}-\frac{1}{x+5}=0 \\
& \frac{(x+5)^{2}}{1}=\frac{1}{x+5} \\
& \sqrt[3]{(x+5)^{3}}=\sqrt[3]{1}
\end{aligned}
$$

$$
x+5=1
$$

$$
x=-4
$$

Check: LS. $=\sqrt{4+5} \mid R S=\sqrt{4}+5$

$$
\begin{array}{ll}
=\sqrt{9} & =2+5 \\
=3 & =7
\end{array}
$$

$\therefore x=4$ is an extraneous root
: there is no solution
Ex. 3. From the functions listed in the box, find two whose composite function is $h(x)$.

$$
\begin{array}{ll}
p(x)=x-3 & f(x)=x^{2} \\
g(x)=\sqrt{x} & q(x)=x+1
\end{array}
$$

a) $h(x)=(x+1)^{2}$
b) $h(x)=\sqrt{x-3}$
c) $h(x)=x^{2}-6 x+9$
$h(x)=f(q(x))$
$h(x)=g(p(x))$
$h(x)=(x-3)^{2}$
$h(x)=f(p(x))$

Ex. 2. Express h as the composition of two functions f and g, such that $h(x)=f(g(x))$.
a) $h(x)=\sqrt{x^{2}-4}$
$g(x)=x^{2}-4$
$f(x)=\sqrt{x}$
b) $h(x)=2 \sin ^{2} x-3 \sin x+1$
$g(x)=\sin x$
$f(x)=2 x^{2}-3 x+1$
c) $h(x)=\frac{1}{1-x^{2}}$

$$
\begin{aligned}
& g(x)=1-x^{2} \\
& f(x)=\frac{1}{x}
\end{aligned}
$$

d) $h(x)=2^{(6 x+7)}$
$g(x)=6 x+7$
$f(x)=2^{x}$

Definition of a Composite Function
For two functions f and g, the composite function $f(g(x))$ is formed by evaluating f at g. This new composite function $f \circ g$, is called the composition of \boldsymbol{f} and \boldsymbol{g}, and is defined by $(f \circ g)(x)=f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. State the domain and range of f and g. Use the graphs of f and g to evaluate each expression, if it exists. If it does not exist, explain why.

$$
\begin{aligned}
& D_{f}=\{x \in \mathbb{R} \mid-3 \leq x \leq 3\} \\
& R_{f}=\{y \in \mathbb{R} \mid 0 \leq y \leq 9\}
\end{aligned}
$$

$$
D_{g}=\{x \in \mathbb{R} \mid-3 \leq x \leq 1\}
$$

$$
R_{g}=\frac{\{y \in \mathbb{R} \mid-2 \leq y \leq 6\}}{y}
$$

a) $(g \circ f)(-1)$
b) $(g \circ g)(-2)$
c) $(f \circ g)(0)$

$$
\begin{aligned}
& =g(f(-1)) \\
& =g(1) \\
& =6
\end{aligned}
$$

$$
=g(g(-2))
$$

$$
=f(g(0))
$$

$$
=f(4)
$$

undefined/d.n.e

(4 is not in the domain of f)
Ex. 2. If $f(x)=2 x-1, h(x)=x^{2}-2 x, g(x)=\ln (x-1)$ and $p(x)=\cos x$ determine:
a) $f^{-1}(x)$
b) g^{-1}

Let $y=2 x-1$
For inverse,

$$
x=2 y-1
$$

to solve for y

$$
\begin{aligned}
& 2 y=x+1 \\
& y=\frac{x+1}{2} \\
& \therefore f^{-1}(x)=\frac{x+1}{2}
\end{aligned}
$$

c) $\left(f \circ f^{-1}\right)(x)$
$=f\left(f^{-1}(x)\right)$
$=f\left(\frac{x+1}{2}\right)$
$=\mathscr{Z}^{\prime}\left(\frac{x+1}{x_{1}}\right)-1$
$=x+1-1$

$$
=x
$$

Let $y=\ln (x-1)$ For inverse:

$$
\begin{aligned}
& x=\ln (y-1) \\
& e^{x}=y-1 \\
& y=e^{x}+1 \\
& \therefore g^{-1}(x)=e^{x}+1
\end{aligned}
$$

d) $g^{-1} \circ g$

$$
\begin{aligned}
& =g^{-1}(g(x)) \\
& =g^{-1}(\ln (x-1)) \\
& =e^{(\ln (x-1))}+1 \\
& =x-1+1 \\
& =x
\end{aligned}
$$

Recall: $f(x)=2 x-1, h(x)=x^{2}-2 x, g(x)=\ln (x-1)$ and $p(x)=\cos x$

$$
\text { e) } \begin{aligned}
& h \circ f \\
= & h(f(x)) \\
= & h(2 x-1) \\
= & (2 x-1)^{2}-2(2 x-1) \\
= & (2 x-1)(2 x-1)-2(2 x-1) \\
= & 4 x^{2}-4 x+1-4 x+2 \\
= & 4 x^{2}-8 x+3
\end{aligned}
$$

g) x, if $(h \circ g)(x)=0$

$$
\begin{gathered}
h(g(x))=0 \\
h(\ln (x-1))=0 \\
{[\ln (x-1)]^{2}-2[\ln (x-1)]=0}
\end{gathered}
$$

let $a=\ln (x-1)$

$$
\begin{aligned}
& a^{2}-2 a=0 \\
& a(a-2)=0
\end{aligned}
$$

$$
\begin{array}{rlrl}
a=0 & & \text { or } & a=2 \\
\ln (x-1)=0 & \ln (x-1)=2 \\
x-1 & =e^{0} & x-1=e^{2} \\
x-1 & =1 & & x=e^{2}+1 \\
\therefore x & =2 & \\
& \therefore x=2 & \text { or } x=e^{2}+1
\end{array}
$$

$$
\text { f } \begin{aligned}
& (h \circ p)\left(\frac{\pi}{4}\right) \\
= & h\left(p\left(\frac{\pi}{4}\right)\right) \\
= & h\left(\cos \frac{\pi}{4}\right) \\
= & h\left(\frac{1}{\sqrt{2}}\right) \\
= & \left(\frac{1}{\sqrt{2}}\right)^{2}-2\left(\frac{1}{\sqrt{2}}\right) \\
= & \frac{1}{2}-\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
= & \frac{1}{2}-\frac{2 \sqrt{2}}{2} \\
= & \frac{1-2 \sqrt{2}}{2}
\end{aligned}
$$

h) x, for $0 \leq x \leq 2 \pi$ if

$$
\begin{gathered}
(f \circ p)(x)=-2 \\
f(p(x))=-2 \\
f(\cos x)=-2 \\
2 \cos x-1=-2 \\
\cos x=\frac{-1}{2} \\
\text { rad }=\frac{\pi}{3}
\end{gathered}
$$

In QII: $x=\frac{2 \pi}{3}$
In Q III: $x=\frac{4 \pi}{3}$

$$
\therefore x=\frac{2 \pi}{3} \text { or } x=\frac{4 \pi}{3}
$$

\qquad WARMUP

1. Given $f(x)=\log _{3} x$ and $g(x)=x^{3}-5 x^{2}+2 x+8$, determine

$$
\text { a) } \begin{aligned}
& h(x)=(f \circ g)(x) \\
& h(x)=f(g(x)) \\
& h(x)=f\left(x^{3}-5 x^{2}+2 x+8\right) \\
& h(x)=\log _{3}\left(x^{3}-5 x^{2}+2 x+8\right) \\
& \because g(-1)=0 \therefore x+1 \text { is a factor } \\
& \frac{x^{2}-6 x+8}{2 x+8} \\
& x + 1 \longdiv { x ^ { 3 } - 5 x ^ { 2 } + 2 x + 8 } \\
& \frac{x^{3}+x^{2}}{-6 x^{2}+2 x} \\
& \frac{-6 x^{2}-6 x}{8 x+8} \\
& \frac{8 x+8}{0}
\end{aligned}
$$

b) D_{h} For domain of $h(x)$

$$
x^{3}-5 x^{2}+2 x+8>0
$$

Let $\begin{aligned} g(x) & =x^{3}-5 x^{2}+2 x+8 \\ g(x) & =(x+1)\left(x^{2}-6 x+8\right)\end{aligned}$

$$
\begin{aligned}
& g(x)=(x+1)\left(x^{2}-6 x+8\right) \\
& g(x)=(x+1)(x-4)(x-2)
\end{aligned}
$$

$\therefore x$-ints are $-1,2,4$ (all single)

$$
\therefore D_{h}=\{x \in \mathbb{R} \mid-1<x<2, x>4\}
$$

2. Given $f(x)=\frac{1}{x}$ and $g(x)=\sqrt{x+2}$, determine

$$
\text { a) } \begin{aligned}
& h(x)=(g \circ f)(x) \\
& h(x)=g(f(x)) \\
& h(x)=g\left(\frac{1}{x}\right) \\
& h(x)=\sqrt{\frac{1}{x}+\frac{2}{1}} \\
& h(x)=\sqrt{\frac{1+2 x}{x}}
\end{aligned}
$$

For the domain:
x-int is $-\frac{1}{2}$,
restriction: $x \neq 0$

$$
\therefore D_{h}=\left\{x \in \mathbb{R} \left\lvert\, x \leq-\frac{1}{2}\right. \text { or } x>0\right\}
$$

APPLICATIONS OF COMPOSITE FUNCTIONS
Ex. 1. Refrigeration slows down the growth of bacteria in food. The number of bacteria in a certain food is approximated by $B(T)=15 T^{2}-70 T+600$, where T represents the temperature in degrees Celsius and $3 \leq T \leq 12$. Once the food is removed from refrigeration, the temperature, $T(t)$, is given by $T(t)=3.5 t+3$, where t is the time in hours and $0 \leq t \leq 3$.
a) Write the expression for the number of bacteria in the food, t hours after it is removed from refrigeration.

$$
\begin{aligned}
B(t) & =(\beta \circ T)(t) \\
& =B(T(t)) \\
& =B(3.5 t+3) \\
& =15(3.5 t+3)^{2}-70(3.5 t+3)+600 \\
& =15(3.5 t+3)(3.5 t+3)-70(3.5 t+3)+600 \\
\therefore B(t) & =183.75 t^{2}+70 t+525
\end{aligned}
$$

b) At 1.5 h , about how many bacteria are in the food?

$$
\begin{aligned}
B(1.5) & =183.75(1.5)^{2}+70(1.5)+525 \\
& =1043
\end{aligned}
$$

\therefore there are approximately 1043 bacteria.
c) When will the bacteria count reach about 1200 ?

$$
\begin{aligned}
& \text { Find } t \text { when } B(t)=1200 \\
& 183.75 t^{2}+70 t+525=1200 \\
& 183.75 t^{2}+70 t-675=0 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& t=\frac{-70 \pm \sqrt{(70)^{2}-4(183.75)(-675)}}{2(183.75)} \\
& t=\frac{-70 \pm \sqrt{501025}}{367.5} \\
& t=\frac{-70-\sqrt{501025}}{367.5} \quad \text { or } \quad t=\frac{-70+\sqrt{501025}}{367.5} \\
& \text { inadmissable } \quad t=1.74 \\
& \because 0 \leq t \leq 3 \quad \therefore \text { the bacteria count } \\
& \text { wile reach about } 100 \\
& \text { after approximately 1 hour. } 45 \text { minute }
\end{aligned}
$$

Ex. 2. A circle has radius r.
a) Write a function for the circle's area in terms of r.

Formula: $A=\pi r^{2} \quad$ Function: $A(r)=\pi r^{2}$
b) Write a function for the radius in terms of the circumference, C.

$$
\begin{aligned}
& C=2 \pi r \\
& r=\frac{C}{2 \pi}
\end{aligned}
$$

Function: $r(c)=\frac{c}{2 \pi}$

$$
\text { c) } \begin{aligned}
& \text { Determine }(A \circ r)(C) . \\
& A(r(C)) \\
&= A\left(\frac{C}{2 \pi}\right) \\
&= \pi\left(\frac{C}{2 \pi}\right)^{2} \\
&= \frac{1}{1} \cdot \frac{C^{2}}{4 \pi^{2-1}}
\end{aligned}
$$

d) A tree's circumference is 3.6 m . What is the area of the cross section?

$$
\begin{aligned}
A(3.6) & =\frac{(3 . b)^{2}}{4 \pi} \\
& =1.03
\end{aligned}
$$

\therefore the area is

$$
\text { approximately } 1.03 \mathrm{~m}^{2} \text {. }
$$

Ex. 3. A spherical hailstone grows in a cloud. The hailstone maintains a spherical shape while its radius increases at a rate of $0.2 \mathrm{~mm} / \mathrm{min}$.
a) Express the radius, r, in millimetres, of the hailstone, as a function of the time, t, in minutes.

$$
r(t)=0.2 t
$$

b) Express the volume, V, in cubic millimetres, of the hailstone, in terms of r.

$$
V=\frac{4}{3} \pi r^{3} \quad \text { or } \quad V(r)=\frac{4}{3} \pi r^{3}
$$

c) Determine $(V \circ r)(t)$ and explain what it means.

$$
\begin{aligned}
V(t) & =V(r(t)) \\
& =V(0.2 t) \\
& =\frac{4}{3} \pi\left(\frac{1}{5} t\right)^{3} \\
& =\frac{4}{3} \pi \cdot \frac{1}{125} t^{3}
\end{aligned} \quad \rightarrow \quad \therefore V(t)=\frac{4 \pi}{375} t^{3}
$$

d) What is the volume of the hailstone 1 h after it begins to form?

$$
\begin{aligned}
V(60) & =\frac{4 \pi}{375}(60)^{3} \\
& =7238 \mathrm{~mm}^{3}
\end{aligned}
$$

\therefore the hailstone is

HW. Worksheet on Applications of Composite Functions

$$
\begin{array}{r}
7238 \mathrm{~mm}^{3} \div 10^{3} \\
=7.238 \mathrm{~cm}^{3}
\end{array}
$$

\qquad WARMUP
Ex. 1. Given $f(x)=\frac{1}{x}$ and $g(x)=\sqrt{x+2}$, find
a) $h(x)=(f \circ g)(x)$, graph and state the domain and range.

$$
\begin{aligned}
& h(x)=f(g(x)) \\
& h(x)=f(\sqrt{x+2}) \\
& h(x)=\frac{1}{\sqrt{x+2}}
\end{aligned}
$$

$$
\text { (i) Graph } y=\sqrt{x+2}
$$

VA

$$
x=-2
$$

b) x, if $f(x)=g(x)$ and illustrate your solution graphically.

$$
\frac{1}{x}=\sqrt{x+2}
$$

Square both sides

$$
\frac{1}{x^{2}}=\frac{x+2}{1}
$$

$$
1=x^{3}+2 x^{2}
$$

$$
0=x^{3}+2 x^{2}-1
$$

Let

$$
p(x)=x^{3}+2 x^{2}-1
$$

$$
\because P(-1)=0
$$

$$
\therefore x+1 \text { is a }
$$

factor
1

$$
x + 1 \longdiv { x ^ { 3 } + 2 x ^ { 2 } + 0 x - 1 }
$$

$$
\begin{aligned}
& \frac{x^{3}+x^{2}}{x^{2}+o x} \\
& \frac{x+x}{-x-1}
\end{aligned}
$$

Ex. 2. Given $f(x)=\frac{x}{x+2}$ and $g(x)=2 x+1$, determine:
a) $g^{-1}(x)$
b) $f^{-1}(x)$

Let $y=2 x+1$.
For the inverse,

$$
\begin{aligned}
x & =2 y+1 \\
x-1 & =2 y \\
y & =\frac{x-1}{2} \\
\therefore g^{-1}(x) & =\frac{x-1}{2}
\end{aligned}
$$

c) $(g \circ f)(x)$

$$
\begin{aligned}
g(f(x)) & =g\left(\frac{x}{x+2}\right) \\
& =2\left(\frac{x}{x+2}\right)+1 \\
& =\frac{2 x}{x+2}+\frac{x+2}{x+2} \\
\therefore(g \circ f)(x) & =\frac{3 x+2}{x+2}
\end{aligned}
$$

Let $y=\frac{x}{x+2}$
For the inverse:

$$
\begin{aligned}
& \frac{x}{1}=\frac{y}{y+2} \\
& x(y+2)=y \\
& x y+2 x=y \\
& x y-y=-2 x \\
& y(x-1)=-2 x \\
& y=\frac{-2 x}{x-1}
\end{aligned} \quad \rightarrow \therefore f^{-1}(x)=\frac{-2 x}{x-1}
$$

d) $(g \circ f)^{-1}(x)$
Let $y=\frac{3 x+2}{x+2}$
For the inverse:
$3 y+2$
d) $(g \circ f)^{-1}(x)$
Let $y=\frac{3 x+2}{x+2}$
For the inverse:
$3 y+2$
d) $(g \circ f)^{-1}(x)$
Let $y=\frac{3 x+2}{x+2}$
For the inverse:

$$
\begin{aligned}
\frac{x}{1} & =\frac{3 y+2}{y+2} \\
x y+2 x & =3 y+2 \\
x y-3 y & =2-2 x \\
y(x-3) & =2-2 x \\
y & =\frac{2-2 x}{x-3}
\end{aligned} \quad \therefore \therefore(g \circ f)^{-1}(x)=\frac{2 x-2}{3-x}
$$

Ex. 3. A company produces a product for $\$ 9.45$ per unit, plus a fixed operating cost of $\$ 52000$. The company sells the product for $\$ 15.80$ per unit.
a) Determine a function, $C(x)$, to represent the cost of producing x units, in dollars.

$$
C(x)=9.45 x+52000
$$

b) Determine a function, $R(x)$, to represent the revenue generated by selling x units, in dollars.

$$
R(x)=15.8 x
$$

c) Determine a function, $P(x)$, that represents profit.

$$
\begin{aligned}
P(x) & =R(x)-C(x) \\
P(x) & =15.8 x-(9.45 x+52000) \\
\therefore P(x) & =6.35 x-52000
\end{aligned}
$$

HW. Using your answers to Ex. 2., show that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

