# MHF 4UI Unit 7: Day 5 Date: Dec 12

1

## **COMPOSITION INVOLVING TRIGONOMETRIC FUNCTIONS**

| <b>Ex. 1.</b> Given $f(x) = \frac{1}{2}$ , $g(x) = \sin x$ and $h(x) = 2x^2 - 5x + 2$ find: |                                                             |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                             | $2\chi^2 - 3\chi - 1$                                       |
| <b>a)</b> x, if $h(x) + f(x) = 0$                                                           | $\chi - 1$ ) $2\chi^3 - 5\chi^2 + 2\chi + 1$                |
| $\chi(2\chi^2-5\chi+2)+\chi(\frac{1}{\chi})=(0)\chi$ , $\chi\neq 0$                         | $2x^3-2x^2$                                                 |
| $2x^{3}-5x^{2}+2x+1=0$                                                                      | -3x <sup>2</sup> +2x<br>-3x <sup>2</sup> +3x                |
| $(\chi - 1)(2\chi^2 - 3\chi - 1) = 0$                                                       | - * +1                                                      |
| $x = 1$ or $x = \frac{3 \pm \sqrt{(-3)^2 - 4(2)(-1)}}{2(2)}$ (. $x = 1$                     | $\chi = \frac{3 + \sqrt{17}}{4} \qquad \frac{-\chi + 1}{6}$ |
| $\chi = \frac{3 \pm \sqrt{17}}{4}$                                                          | $\frac{3-\sqrt{17}}{4}$                                     |

b) 
$$(g \circ f)\left(-\frac{3}{2\pi}\right)$$
  
 $= g\left(f\left(-\frac{3}{2\pi}\right)\right)$   
 $= g\left(f\left(-\frac{3}{2\pi}\right)\right)$   
 $= f\left(g\left(-\pi\right)\right)$   
 $= f\left(g\left(-\pi\right)\right)$   
 $= f\left(g\left(-\pi\right)\right)$   
 $= f\left(g\left(x\right)\right)$   
 $= f(g(x))$   
 $= f(g(x))$   

e) x, for  $0 \le x \le 2\pi$  if  $(f \circ g)(x) + 5 = 0$ From d)  $\csc x + 5 = 0$  $\sin x = -\frac{1}{5}$  $raa = \sin^{-1}(+\frac{1}{5})$ ≐0.2014 INQIL In QIII  $\chi = 2\pi - 0.2014$  $\chi = TT + 0.2014$  $\chi = 6.08$  $\chi = 3.34$ 

f) x for 
$$0 \le x \le 2\pi$$
, if  $(h \circ f \circ g)(x) = 0$   
 $h(f(g(x))) = 0$   
 $h(c \le x) = 0$   
 $2c \le x - 5c \le x + 2 = 0$   
 $(2c \le x - 1)(c \le x - 2) = 0$   
 $c \le x = \frac{1}{2}$  or  $c \le x = 2$   
 $f = \frac{1}{2}$  or  $c \le x = 2$   
 $f = \frac{1}{2}$  or  $c \le x = \frac{1}{2}$   
 $ho = \frac{1}{2}$  or  $c \le x = \frac{1}{2}$   
 $ho = \frac{1}{2}$   $rac = \frac{1}{6}$   
 $-|\le \sin x \le 1$   $rac = \frac{1}{6}$   
 $x = \frac{1}{6}$   $x = \frac{5\pi}{6}$ 

Recall: 
$$sin(A+B) = SinAcosB + SinBcosA$$
  
 $cos(A+B) = CosAcosB - sinAsinB$   
 $sin2A = 2SinAcosA$   
 $sin2A = 2SinAcosA$   
 $cos2A = 2cos^2A - |$   
 $= |-2sin^2A$   
 $= cos^2A - 5in^2A$ 

**Ex. 2.** Find the points of intersection of the curves  $f(x) = \cos x$  and  $g(x) = \cos 2x$  for  $0 \le x \le 2\pi$ . Illustrate your solution graphically.

For points of intersection:  

$$f(x) = g(x)$$

$$\cos x = \cos^{2} x$$

$$\cos x = 2\cos^{2} x - 1$$

$$2\cos^{2} x - \cos x - 1 = 0$$

$$(2\cos x + 1)(\cos x - 1) = 0$$

$$\cos x = -\frac{1}{2} \text{ or } \cos x = 1$$

$$raa = \frac{\pi}{3} \qquad \therefore x = 0, \ x = 2\pi$$
In QII: In QII:  

$$x = \frac{2\pi}{3} \qquad x = \frac{4\pi}{3}$$

$$\therefore \text{ the points of } \text{ intersection } \text{ ave} = (0, 1) \left(\frac{2\pi}{3}, -\frac{1}{2}\right) \left(\frac{4\pi}{3}, -\frac{1}{2}\right) (2\pi, 1)$$



HW. Worksheet on Composition Involving Trigonometric Functions

MHF 4UI Unit 7: Day 6 Date: Dec 5/14 COMBINING FUNCTIONS USING ALGEBRA

Two real-valued functions f and g can be combined to form new functions f + g, f - g, fg and  $\frac{f}{g}$  in a manner similar to the way we add, subtract, multiply and divided real numbers.

#### **Operations on Functions**

Let the domain of f be A and the domain of g be B. Addition (f+g)(x) = f(x) + g(x) Domain =  $A \cap B$ Subtraction (f-g)(x) = f(x) - g(x) Domain =  $A \cap B$ Multiplication (fg)(x) = f(x)g(x) Domain =  $A \cap B$ Division  $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$  D =  $\left\{x \in A \cap B \mid g(x) \neq 0\right\}$ 

**Ex. 1.** Use the graphs of f and g to determine the following.



Ex. 2. If 
$$f(x) = x + 3$$
 and  $g(x) = x^2 + 8x + 15$  determine each of the following.  
a) the domain of  $f + g$   
b) the domain of  $\frac{f}{g}$   
 $D_{f+g} : \left\{ x \in R \right\}$   
 $p_{f} : \left\{ x \in R$ 

Ex. 3. If 
$$f(x) = \sqrt{9 - x^2}$$
 and  $g(x) = \sqrt{x + 3}$ , determine the following.  
a) the domain of  $f$   
 $9 - x^2 \ge 0$   
 $(3 - x)(3 + x) \ge 0$   
c) the domain of  $f - g$   
 $D_{f} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$   
 $D_{f} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$   
 $D_{f} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$   
 $D_{g} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$   
 $D_{g} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$   
 $D_{g} \cdot \{x \in \mathbb{R} \mid -3 \le x \le 3\}$ 

e) the domain, equation and graph of 
$$\left(\frac{f}{g}\right)(x)$$
  

$$D_{f}: \left\{ x \in \mathbb{R} \mid -3 \le x \le 3 \right\}$$

$$\left(\frac{f}{9}(x) = \frac{f(x)}{g(x)} = \frac{1}{9} \frac{9 - x^{2}}{\sqrt{x+3}} = \sqrt{\frac{9 - x^{2}}{\sqrt{x+3}}} = \sqrt{\frac{9 - x^{2}}{x+3}} + \sqrt{\frac{1}{2}} = \sqrt{\frac{1}{2}} + \sqrt{$$

$$\frac{f}{g}(x) = \sqrt{-(x-3)}$$

f) 
$$(f+g)(-1)$$
  
=  $f(-1) + g(-1)$   
=  $\sqrt{8}^{2} + \sqrt{2}^{2}$   
=  $2\sqrt{2} + \sqrt{2}^{2}$   
=  $3\sqrt{2}^{2}$ 



Two real-valued functions f and g can be combined to form new functions f + g, f - g, fg and  $\frac{f}{g}$  in a manner similar to the way we add, subtract, multiply and divided real numbers.

#### **Operations on Functions**

Let the domain of f be A and the domain of g be B. Addition (f+g)(x) = f(x) + g(x) Domain =  $A \cap B$ Subtraction (f-g)(x) = f(x) - g(x) Domain =  $A \cap B$ Multiplication (fg)(x) = f(x)g(x) Domain =  $A \cap B$ Division  $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$  D =  $\left\{x \in A \cap B \mid g(x) \neq 0\right\}$ 

**Ex. 1.** If  $f(x) = \log_4(x^2 - 9)$  and  $g(x) = \log_4(1 - x)$ , determine the following.

a) the domain of f  $\chi^2 - 9 > 0$  $(\chi - 3)(\chi + 3) > 0$ 

$$\begin{array}{l} \begin{array}{c} -3 & | & 3 \\ D_{f} : \left[ x \in \mathbb{R} | x < -3 \text{ or } x > 3 \right] \\ \textbf{c)} & (g - f)(x) \text{ and its domain} \\ (g - f)(x) &= g(\pi) - f(\pi) \\ &= \log_{4}(1 - \pi) - \log_{4}(\pi^{2} - 9) \\ \therefore (g - f)(x) &= \log_{4}\left[\frac{1 - x}{\pi^{2} - 9}\right] \\ \therefore (g - f)(x) &= \log_{4}\left[\frac{1 - x}{\pi^{2} - 9}\right] \\ D_{g - f} : \left\{ x \in \mathbb{R} \mid x < -3 \right\} \end{array}$$

5

e) 
$$(f+g)(-7)$$
  
=  $f(-7) + g(-7)$   
=  $\log_4 40 + \log_4 8$   
=  $\log_4 320$   
 $(= \frac{\log_{320}}{\log_4} = \dots \text{ using change} \text{ of base formula})$ 

b) the domain of 
$$g$$
  
 $|-\chi > 0$   
 $-\chi > -1$   
 $\chi < 1$   
Dg: {  $x \in \mathbb{R} | \chi < 1$ }

d) 
$$(f+g)(x)$$
 and its domain  
 $(f+g)(x) = f(x) + g(x)$   
 $= \log_{4}(x^{2}-9) + \log_{4}(1-x)$   
 $= \log_{4}[(x^{2}-9)(1-x)]$   
 $\therefore (f+g)(x) = \log_{4}(-x^{3}+x^{2}+9x-9)$   
 $D_{f+g}: \{x \in \mathbb{R} \mid x \leq -3\}$ 

$$f) \left(\frac{g}{f}\right)(-4)$$

$$= \frac{g(-4)}{f(-4)}$$

$$= \frac{\log_{4} 5}{\log_{4} 7}$$

$$= \log_{7} 5 \quad (\text{change})$$

**Ex. 2.** If  $f(x) = 4^{-x}$  and  $g(x) = 3(2)^{5x-1}$ , determine the following.

a) the domain of f $\int_{\mathbf{F}} \left\{ \mathbf{x} \in \mathbb{R} \right\}$ 

b) the domain of 
$$g$$
  
 $\mathcal{D}_g: \{x \in \mathbb{R}\}$ 

c) 
$$(fg)(x)$$
 and its domain  
 $(fg)(x) = f(x) \cdot g(x)$   
 $= 4^{-\chi} \cdot 3(2)^{5\chi-1}$   
 $= 2^{-2\chi} \cdot 3(2)^{5\chi-1}$   
 $\cdot (fg)(x) = 3(2)^{3\chi-1}$   
 $D_{fg}: \{\chi \in \mathbb{R}\}$ 

e) 
$$(f-g)(0)$$
  
 $(f-g)(0) = f(0) - g(0)$   
 $= 4^{-(0)} - 3(2)^{5(0)-1}$   
 $= 1 - 3(\frac{1}{2})$   
 $= \frac{2}{2} - \frac{3}{2}$   
 $\therefore (f-g)(0) = -\frac{1}{2}$ 

d) 
$$\left(\frac{g}{f}\right)(x)$$
 and its domain  
 $\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)}$   
 $= \frac{3(2)^{5x-1}}{4^{-x}}$   
 $= \frac{3(2)^{5x-1}}{2^{-2x}}$   
 $\therefore \left(\frac{g}{f}\right)(x) = 3(2)^{+x-1}$   
 $D_{\frac{g}{f}}: \{\chi \in \mathbb{R}\}$ 

f) 
$$(fg)(-1)$$
  
 $(fg)(-1) = f(-1)g(-1)$   
 $= [4^{-(-1)}] [3(2)^{5(-1)-1}]$   
 $= 4' \cdot 3 \cdot 2^{-6}$   
 $= \frac{12}{64}$   
 $\therefore (fg)(-1) = \frac{3}{16}$ 

### HW. Day 6 Part I #2, 3, Part II #2, 3

For Unit 7 Test: do Day 7 Unit 7: Review #1 to 7