7.1 Composite Functions

Definition of a Composite Function

For two functions f and g, the composite function $f(g(x))$ is formed by evaluating f at g. This new composite function $f \circ g$, is called the composition of \boldsymbol{f} and \boldsymbol{g}, and is defined by $(f \circ g)(x)=f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. Let $f=\{(3,2),(5,1),(7,4),(9,3),(11,5)\}$ and $g=\{(1,3),(2,5),(3,7),(4,9),(5,6)\}$. Determine
a) $(f \circ g)(3)$
b) $(g \circ f)(3)$
c) $(f \circ f)(9)$
d) $(g \circ g)(3)$
e) $f \circ g$
e) $g \circ f$
f) $D_{f \circ g}$

Ex. 2. If $f(x)=\sqrt{x}, g(x)=x+5$ and $h(x)=x^{2}-\frac{1}{x}$, find each of the following:
a) $(f \circ g)(4)$
b) $(g \circ f)(4)$
c) $(h \circ f \circ g)(-5)$
d) $(f \circ g)(x)$
e) $g \circ f$
f) $h \circ g$

Recall: $f(x)=\sqrt{x}, g(x)=x+5, h(x)=x^{2}-\frac{1}{x}$ and $x \in R$
g) x, if $(f \circ g)(x)=(g \circ f)(x)$
h) x, if $(h \circ g)(x)=0$

Ex. 3. From the functions listed in the box, find two whose composite function is $h(x)$.

$$
\begin{array}{ll}
p(x)=x-3 & f(x)=x^{2} \\
g(x)=\sqrt{x} & q(x)=x+1
\end{array}
$$

a) $h(x)=(x+1)^{2}$
b) $h(x)=\sqrt{x-3}$
c) $h(x)=x^{2}-6 x+9$

Ex. 2. Express h as the composition of two functions f and g, such that $h(x)=f(g(x))$.
a) $h(x)=\sqrt{x^{2}-4}$
b) $h(x)=2 \sin ^{2} x-3 \sin x+1$
c) $h(x)=\frac{1}{1-x^{2}}$
d) $h(x)=2^{(6 x+7)}$

Definition of a Composite Function

For two functions f and g, the composite function $f \circ g$ is formed by evaluating f at g. This new composite function $f \circ g$, is called the composition of \boldsymbol{f} and \boldsymbol{g}, and is defined by $(f \circ g)(x)=f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. State the domain and range of f and g. Use the graphs of f and g to evaluate each expression, if it exists. If it does not exist, explain why.

$$
D_{f}=
$$

\qquad
$R_{f}=$ \qquad

$$
R_{g}=
$$

\qquad
a) $(g \circ f)(-1)$
b) $(g \circ g)(-2)$
c) $(f \circ g)(0)$

Ex. 2. If $f(x)=2 x-1, h(x)=x^{2}-2 x, g(x)=\ln (x-1)$ and $p(x)=\cos x$ determine:
a) $f^{-1}(x)$
b) g^{-1}
c) $\left(f \circ f^{-1}\right)(x)$
d) $g^{-1} \circ g$

Recall: $f(x)=2 x-1, h(x)=x^{2}-2 x, g(x)=\ln (x-1)$ and $p(x)=\cos x$
e) $h \circ f$
f) $(h \circ p)\left(\frac{\pi}{4}\right)$
g) x, if $(h \circ g)(x)=0$
h) x, for $0 \leq x \leq 2 \pi$ if $(f \circ p)(x)=-2$

7.3 Applications of Composite Functions

Warmup

1. Given $f(x)=\log _{3} x$ and $g(x)=x^{3}-5 x^{2}+2 x+8$, determine
a) $h(x)=(f \circ g)(x)$
b) D_{h}
2. Given $f(x)=\frac{1}{x}$ and $g(x)=\sqrt{x+2}$, determine
a) $h(x)=(g \circ f)(x)$
b) D_{h}

Applications of Composite Functions

Ex. 1. Refrigeration slows down the growth of bacteria in food. The number of bacteria in a certain food is approximated by $B(T)=15 T^{2}-70 T+600$, where T represents the temperature in degrees Celsius and $3 \leq T \leq 12$. Once the food is removed from refrigeration, the temperature, $T(t)$, is given by $T(t)=3.5 t+3$, where t is the time in hours and $0 \leq t \leq 3$.
a) Write the expression for the number of bacteria in the food, t hours after it is removed from refrigeration.
b) At 1.5 h , about how many bacteria are in the food?
c) When will the bacteria count reach about 1200 ?

Ex. 2. A circle has radius r.
a) Write a function for the circle's area in terms of r.
b) Write a function for the radius in terms of the circumference, C.
c) Determine $(A \circ r)(C)$.
d) A tree's circumference is 3.6 m . What is the area of the cross section?

Ex. 3. A spherical hailstone grows in a cloud. The hailstone maintains a spherical shape while its radius increases at a rate of $0.2 \mathrm{~mm} / \mathrm{min}$.
a) Express the radius, r, in millimetres, of the hailstone, as a function of the time, t, in minutes.
b) Express the volume, V, in cubic millimetres, of the hailstone, in terms of r.
c) Determine $(V \circ r)(t)$ and explain what it means.
d) What is the volume of the hailstone 1 h after it begins to form?

7.4 Applications of Composite Functions

Warmup

Ex. 1. Given $f(x)=\frac{1}{x}$ and $g(x)=\sqrt{x+2}$, find
a) $h(x)=(f \circ g)(x)$, graph and state the domain and range.

b) x, if $f(x)=g(x)$ and illustrate your solution graphically.

Ex. 2. Given $f(x)=\frac{x}{x+2}$ and $g(x)=2 x+1$, determine:
a) $g^{-1}(x)$
b) $f^{-1}(x)$
c) $(g \circ f)(x)$
d) $(g \circ f)^{-1}(x)$

Ex. 3. The demand function for a new magazine is $p(x)=-6 x+40$, where $p(x)$ represents the selling price of the magazine, in thousands of dollars, and x is the number sold, in thousands. The cost function is $C(x)=4 x+48$.
a) Determine the revenue function, $R(x)$, and profit function, $P(x)$, in simplified form.
b) Calculate the maximum profit and number of magazines sold that will produce it.

HW. i) Using your answers to Ex. 2., show that $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
ii) Exercise 7.4

Ex. 1. Given $f(x)=\frac{1}{x}, g(x)=\sin x$ and $h(x)=2 x^{2}-5 x+2$ find:
a) x, if $h(x)+f(x)=0$
b) $(g \circ f)\left(-\frac{3}{2 \pi}\right)$
c) $(f \circ g)(-\pi)$
d) $(f \circ g)(x)$
e) x, for $0 \leq x \leq 2 \pi$ if $(f \circ g)(x)+5=0 \quad$ f) x for $0 \leq x \leq 2 \pi$, if $(h \circ f \circ g)(x)=0$

Recall: $\sin (A+B)=$ $\cos 2 A=$

$$
\begin{array}{ll}
\cos (A+B)= & = \\
\sin 2 A= & =
\end{array}
$$

Ex. 2. Find the points of intersection of the curves $f(x)=\cos x$ and $g(x)=\cos 2 x$ for $0 \leq x \leq 2 \pi$. Illustrate your solution graphically.

Two real-valued functions f and g can be combined to form new functions $f+g, f-g, f g$ and $\frac{f}{g}$ in a manner similar to the way we add, subtract, multiply and divide real numbers.

Operations on Functions

Let the domain of f be A and the domain of g be B.
Addition $\quad(f+g)(x)=f(x)+g(x) \quad$ Domain $=A \cap B$
Subtraction $\quad(f-g)(x)=f(x)-g(x) \quad$ Domain $=A \cap B$
Multiplication $\quad(f g)(x)=f(x) g(x) \quad$ Domain $=A \cap B$
Division $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad \mathrm{D}=\{x \in A \cap B \mid g(x) \neq 0\}$

Ex. 1. Use the graphs of f and g to determine the following.
a) $D_{f}=\{x \in R \mid-3 \leq x \leq 3\}$,
$D_{g}=\{x \in R \mid-3 \leq x \leq 1\}$
b) $D_{f+g}=$ \qquad $D_{f-g}=\{x \in R \mid-3 \leq x \leq 1\}$
c) $D_{f g}=\{x \in R \mid-3 \leq x \leq 1\}$,
$D_{\frac{f}{g}}=$ \qquad
d) $(f+g)(-1)$
e) $(f-g)(-3)$
f) $(f g)(1)$
g) $\left(\frac{f}{g}\right)(-2)$

h) the graph and equation of $(f+g)(x)$

x	$f(x)$	$g(x)$	$(f+g)(x)$

Ex. 2. If $f(x)=x+3$ and $g(x)=x^{2}+8 x+15$ determine each of the following.
a) $(f-g)(-5)$
b) $(f g)(0)$
c) the domain of $f+g$
d) the domain of $\frac{f}{g}$
e) the equation and graph of $(f g)(x)$
f) the equation and graph of $\left(\frac{f}{g}\right)(x)$

Ex. 3. If $f(x)=\sqrt{9-x^{2}}$ and $g(x)=\sqrt{x+3}$, determine the following.
a) $(f+g)(-1)$
b) the domain of g
c) the domain of f
d) the domain of $f-g$
e) the domain, equation and graph of $\left(\frac{f}{g}\right)(x)$

Two real-valued functions f and g can be combined to form new functions $f+g, f-g, f g$ and $\frac{f}{g}$ in a manner similar to the way we add, subtract, multiply and divide real numbers.

Operations on Functions

Let the domain of f be A and the domain of g be B.
Addition $\quad(f+g)(x)=f(x)+g(x) \quad$ Domain $=A \cap B$
Subtraction $\quad(f+g)(x)=f(x)+g(x) \quad$ Domain $=A \cap B$
Multiplication $\quad(f g)(x)=f(x) g(x) \quad$ Domain $=A \cap B$
Division $\quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \quad \mathrm{D}=\{x \in A \cap B \mid g(x) \neq 0\}$

Ex. 1. If $f(x)=\log _{4}\left(x^{2}-9\right)$ and $g(x)=\log _{4}(1-x)$, determine the following.
a) $(f+g)(-7)$
b) $\left(\frac{g}{f}\right)(-4)$
c) the domain of f
d) the domain of g
e) $(g-f)(x)$ and its domain
f) $(f+g)(x)$ and its domain

Ex. 2. If $f(x)=4^{-x}$ and $g(x)=3(2)^{5 x-1}$, determine the following.
a) $(f-g)(0)$
b) $(f \circ g)(0)$
c) $(f g)(-1)$
d) the domain of $f g$
e) the domain of $\frac{g}{f}$
c) the equation of $(f g)(x)$
d) the equation of $\left(\frac{g}{f}\right)(x)$

