<u>UNIT 7:</u> COMBINING FUNCTIONS

7.1 Composite Functions

Definition of a Composite Function

For two functions f and g, the composite function f(g(x)) is formed by evaluating f at g. This new *composite function* $f \circ g$, is called the **composition of** f and g, and is defined by $(f \circ g)(x) = f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. Let $f = \{(3,2), (5,1), (7,4), (9,3), (11,5)\}$ and $g = \{(1,3), (2,5), (3,7), (4,9), (5,6)\}$. Determine

a) $(f \circ g)(3)$ **b)** $(g \circ f)(3)$ **c)** $(f \circ f)(9)$ **d)** $(g \circ g)(3)$

e)
$$f \circ g$$
 e) $g \circ f$ **f)** $D_{f \circ g}$

Ex. 2. If
$$f(x) = \sqrt{x}$$
, $g(x) = x + 5$ and $h(x) = x^2 - \frac{1}{x}$, find each of the following:
a) $(f \circ g)(4)$
b) $(g \circ f)(4)$
c) $(h \circ f \circ g)(-5)$

d) $(f \circ g)(x)$ **e**) $g \circ f$ **f**) $h \circ g$

Recall:
$$f(x) = \sqrt{x}$$
, $g(x) = x + 5$, $h(x) = x^2 - \frac{1}{x}$ and $x \in R$
g) x, if $(f \circ g)(x) = (g \circ f)(x)$
h) x, if $(h \circ g)(x) = 0$

Ex. 3. From the functions listed in the box, find two whose composite function is h(x).

a)
$$h(x) = (x+1)^2$$

 $p(x) = x-3$ $f(x) = x^2$
 $g(x) = \sqrt{x}$ $q(x) = x+1$
b) $h(x) = \sqrt{x-3}$
c) $h(x) = x^2 - 6x + 9$

Ex. 2. Express *h* as the composition of two functions *f* and *g*, such that h(x) = f(g(x)). **a)** $h(x) = \sqrt{x^2 - 4}$ **b)** $h(x) = 2\sin^2 x - 3\sin x + 1$

c)
$$h(x) = \frac{1}{1 - x^2}$$
 d) $h(x) = 2^{(6x+7)}$

7.2 Composition of Functions continued

Definition of a Composite Function

For two functions f and g, the composite function $f \circ g$ is formed by evaluating f at g. This new *composite function* $f \circ g$, is called the **composition of** f and g, and is defined by $(f \circ g)(x) = f(g(x))$. In this situation, the domain of f is the range of g, provided that g is defined.

Ex. 1. State the domain and range of f and g. Use the graphs of f and g to evaluate each expression, if it exists. If it does not exist, explain why.

Ex. 2. If f(x) = 2x - 1, $h(x) = x^2 - 2x$, $g(x) = \ln(x - 1)$ and $p(x) = \cos x$ determine: **a)** $f^{-1}(x)$ **b)** g^{-1}

c) $(f \circ f^{-1})(x)$

d) $g^{-1} \circ g$

Recall: f(x) = 2x - 1, $h(x) = x^2 - 2x$, $g(x) = \ln(x - 1)$ and $p(x) = \cos x$

e)
$$h \circ f$$
 f) $(h \circ p)(\frac{\pi}{4})$

g) *x*, if $(h \circ g)(x) = 0$

h) *x*, for $0 \le x \le 2\pi$ if $(f \circ p)(x) = -2$

Warmup

1. Given $f(x) = \log_3 x$ and $g(x) = x^3 - 5x^2 + 2x + 8$, determine **a**) $h(x) = (f \circ g)(x)$ **b**) D_h

2. Given
$$f(x) = \frac{1}{x}$$
 and $g(x) = \sqrt{x+2}$, determine
a) $h(x) = (g \circ f)(x)$ b) D_h

Applications of Composite Functions

- **Ex. 1.** Refrigeration slows down the growth of bacteria in food. The number of bacteria in a certain food is approximated by $B(T) = 15T^2 70T + 600$, where *T* represents the temperature in degrees Celsius and $3 \le T \le 12$. Once the food is removed from refrigeration, the temperature, T(t), is given by T(t) = 3.5t + 3, where *t* is the time in hours and $0 \le t \le 3$.
 - **a**) Write the expression for the number of bacteria in the food, *t* hours after it is removed from refrigeration.

b) At 1.5 h, about how many bacteria are in the food?

c) When will the bacteria count reach about 1200?

Ex. 2. A circle has radius *r*.

- a) Write a function for the circle's area in terms of *r*.
- **b**) Write a function for the radius in terms of the circumference, *C*.
- c) Determine $(A \circ r)(C)$.

d) A tree's circumference is 3.6 m. What is the area of the cross section?

- **Ex. 3.** A spherical hailstone grows in a cloud. The hailstone maintains a spherical shape while its radius increases at a rate of 0.2 mm/min.
 - a) Express the radius, *r*, in millimetres, of the hailstone, as a function of the time, *t*, in minutes.
 - **b**) Express the volume, *V*, in cubic millimetres, of the hailstone, in terms of *r*.
 - c) Determine $(V \circ r)(t)$ and explain what it means.

d) What is the volume of the hailstone 1 h after it begins to form?

Warmup

Ex. 1. Given $f(x) = \frac{1}{x}$ and $g(x) = \sqrt{x+2}$, find **a**) $h(x) = (f \circ g)(x)$, graph and state the domain and range.

b) *x*, if f(x) = g(x) and illustrate your solution graphically.

Ex. 2. Given $f(x) = \frac{x}{x+2}$ and g(x) = 2x+1, determine: **a)** $g^{-1}(x)$ **b)** $f^{-1}(x)$

c) $(g \circ f)(x)$ **d)** $(g \circ f)^{-1}(x)$

Ex. 3. The demand function for a new magazine is p(x) = -6x + 40, where p(x) represents the selling price of the magazine, in thousands of dollars, and x is the number sold, in thousands. The cost function is C(x) = 4x + 48.

a) Determine the revenue function, R(x), and profit function, P(x), in simplified form.

b) Calculate the maximum profit and number of magazines sold that will produce it.

HW. i) Using your answers to **Ex. 2.**, show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. ii) **Exercise 7.4** **Ex. 1.** Given $f(x) = \frac{1}{x}$, $g(x) = \sin x$ and $h(x) = 2x^2 - 5x + 2$ find: **a)** x, if h(x) + f(x) = 0

b)
$$(g \circ f) \left(-\frac{3}{2\pi} \right)$$
 c) $(f \circ g)(-\pi)$ **d**) $(f \circ g)(x)$

e) x, for
$$0 \le x \le 2\pi$$
 if $(f \circ g)(x) + 5 = 0$ f) x for $0 \le x \le 2\pi$, if $(h \circ f \circ g)(x) = 0$

Recall:	$\sin(A+B) =$	$\cos 2A =$
	$\cos(A+B) =$	=
	$\sin 2A =$	=

Ex. 2. Find the points of intersection of the curves $f(x) = \cos x$ and $g(x) = \cos 2x$ for $0 \le x \le 2\pi$. Illustrate your solution graphically.

Two real-valued functions f and g can be combined to form new functions f + g, f - g, fg and $\frac{f}{f}$ in a manner similar to the way we add, subtract, multiply and divide real numbers.

Operations on Functions

Let the domain of f be A and the domain of g be B. Addition (f+g)(x) = f(x) + g(x)Domain = $A \cap B$ **Subtraction** (f-g)(x) = f(x) - g(x)Domain = $A \cap B$ **Multiplication** (fg)(x) = f(x)g(x) Domain $= A \cap B$ $\mathbf{D} = \left\{ x \in A \cap B \,\middle|\, g(x) \neq 0 \right\}$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ Division

- **Ex. 1.** Use the graphs of f and g to determine the following.
 - **a)** $D_f = \{x \in R \mid -3 \le x \le 3\},$ $D_g = \{x \in R \mid -3 \le x \le 1\}$ y Ag(x) = 2x + 4**b**) $D_{f+g} =$ _____, $D_{f-g} = \{x \in R \mid -3 \le x \le 1\}$ 8 **c)** $D_{fg} = \{x \in R \mid -3 \le x \le 1\}, \qquad D_{\frac{f}{g}} =$ _____ 6 **e**) (f-g)(-3)**d**) (f+g)(-1) $f(x) \neq x^{*}$ Δx 0 2)

f)
$$(fg)(1)$$
 g) $\left(\frac{f}{g}\right)(-2$

h) the graph and equation of
$$(f + g)(x)$$

Ex. 2. If f(x) = x + 3 and $g(x) = x^2 + 8x + 15$ determine each of the following. **a)** (f - g)(-5) **b)** (fg)(0)

c) the domain of
$$f + g$$
 d) the domain of $\frac{f}{g}$

e) the equation and graph of
$$(fg)(x)$$
 f) the equation and graph of $\left(\frac{f}{g}\right)(x)$

Ex. 3. If $f(x) = \sqrt{9 - x^2}$ and $g(x) = \sqrt{x + 3}$, determine the following. **a)** (f + g)(-1) **b)** the domain of g

c) the domain of f

d) the domain of f - g

e) the domain, equation and graph of
$$\left(\frac{f}{g}\right)(x)$$

Two real-valued functions f and g can be combined to form new functions f + g, f - g, fg and $\frac{f}{g}$ in a manner similar to the way we add, subtract, multiply and divide real numbers.

Operations on Functions

Let the domain of f be A and the domain of g be B. Addition (f+g)(x) = f(x) + g(x) Domain $= A \cap B$ Subtraction (f+g)(x) = f(x) + g(x) Domain $= A \cap B$ Multiplication (fg)(x) = f(x)g(x) Domain $= A \cap B$ Division $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ D $= \left\{x \in A \cap B \mid g(x) \neq 0\right\}$

Ex. 1. If $f(x) = \log_4(x^2 - 9)$ and $g(x) = \log_4(1 - x)$, determine the following.

a)
$$(f+g)(-7)$$
 b) $\left(\frac{g}{f}\right)(-4)$

c) the domain of f **d**) the domain of g

e) (g-f)(x) and its domain f) (f+g)(x) and its domain

Ex. 2. If $f(x) = 4^{-x}$ and $g(x) = 3(2)^{5x-1}$, determine the following.

a) (f-g)(0) **b)** $(f \circ g)(0)$ **c)** (fg)(-1)

d) the domain of *fg*

e) the domain of $\frac{g}{f}$

c) the equation of (fg)(x)

d) the equation of
$$\left(\frac{g}{f}\right)(x)$$