I Review of Slopes and Equations of Lines
Slope: The slope is the measure of the steepness of a line.

$$
\begin{aligned}
\text { slope } & =\frac{\text { rise }}{r u n} \\
m & =\frac{\Delta y}{\Delta x} \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Equation of a Line: i) slope y-intercept form or
ii) standard form

$$
y=m x+b
$$

$$
A x+B y+C=0, A, B, C \in I, A>0
$$

Note:
i) A vertical line has a slope that is \qquad undefined and an equation of the form $\chi=\#$
ii) A horizontal line has a slope that is \qquad 0 and an equation of the form $y=\#$.
iii) Parallel lines have slopes that are the \qquad same .
\qquad
Ex. 1. Find the equation of the line determined by the given information.
a) slope -2 , y-intercept 3
b) horizontal, through $(-2,5)$

$$
\begin{aligned}
& m=-2, \quad b=3 \\
& \therefore y=-2 x+3 \text { is the } \\
& \text { required equation. }
\end{aligned}
$$

c) perpendicular to $2 x-3 y-6=0$ \& having an x-intercept of -2
(1)

$$
\begin{array}{r}
2 x-3 y-6=0 \\
-3 y=-2 x+6 \\
y=\frac{2}{3} x-2 \\
m=\frac{2}{3} \\
\therefore m_{\perp}=-\frac{3}{2} \\
m_{\text {perp. }}=-\frac{3}{2}
\end{array}
$$

$$
\begin{aligned}
\text { (2) } m & =-\frac{3}{2}, b=- \\
x & =-2, y=0 \\
0= & -\frac{3}{2}(-2)+b \\
0= & 3+b \\
\therefore b= & -3 \\
\therefore y= & -\frac{3}{2} x-3 \text { is the } \\
& \text { equation. }
\end{aligned}
$$

d) through $(-2,4) \&(-6,6)$
(1)

II Rationalizing the Denominator or Numerator

A rational number either repeats or terminates in its decimal form.
An irrational number neither repeats nor terminates in its decimal form.
Ex. 2. Rationalize each denominator.
a) $\frac{1+2 \sqrt{2}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
b) $\frac{\sqrt{3}}{1-2 \sqrt{3}} \cdot \frac{1+2 \sqrt{3}}{1+2 \sqrt{3}}$
$=\frac{\sqrt{2}+4}{6}$

$$
\begin{aligned}
& =\frac{\sqrt{3}+b}{1+2 \sqrt{3}-2 \sqrt{3}-12}=a^{2} \\
& =\frac{\sqrt{3}+6}{1-12} \\
& =-\frac{\sqrt{3}+6}{11} \text { or } \frac{-\sqrt{3}-6}{11}
\end{aligned}
$$

Ex. 3. Rationalize each numerator.
a) $\frac{\sqrt{3}}{1-2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$
b) $\frac{1+2 \sqrt{2}}{3 \sqrt{2}} \cdot \frac{1-2 \sqrt{2}}{1-2 \sqrt{2}}$
$=\frac{3}{\sqrt{3}-6}$

$$
=\frac{1-8}{3 \sqrt{2}-12}
$$

$$
=\frac{-7}{3 \sqrt{2}-12} \text { or } \frac{7}{12-3 \sqrt{2}}
$$

Ex. 4. Write an equivalent expression for a) by rationalizing the numerator and for b) by rationalizing the denominator.

$$
\text { a) } \begin{aligned}
& \frac{\sqrt{9+h}-3}{h} \cdot \frac{\sqrt{9+h}+3}{\sqrt{9+h}+3} \\
= & \frac{(9+h)-9}{h(\sqrt{9+h}+3)} \\
= & \frac{h^{\prime}}{2-\sqrt{x+1}} \cdot \frac{2+\sqrt{x+1}}{2+\sqrt{x+1}} \\
= & =\frac{(x-3)(2+\sqrt{x+1})}{4-(x+1)} \\
=\frac{1}{\sqrt{9+h}+3)} & =\frac{(x-3)(2+\sqrt{x+1})}{4-x-1} \\
= & =\frac{(x-3)(2+\sqrt{x+1})}{-x+3} \\
= & =\frac{(x-3)(2+\sqrt{x+1})}{-(x-3) /}
\end{aligned}
$$

III Simplifying Rational Expressions

Ex. 5. Simplify each of the following.
a) $\frac{x^{2}-16}{x^{3}+64}$
$=\frac{(x-4)(x+4)^{\prime}}{\substack{x+4)\left(x^{2}-4 x+16\right)}}$
$=\frac{x-4}{x^{2}-4 x+16}$
b) $\left(\frac{1}{x-1}\right)\left(\frac{1}{x+3}-\frac{2}{3 x+5}\right)$
$=\left(\frac{1}{x-1}\right)\left[\frac{1(3 x+5)-2(x+3)}{(x+3)(3 x+5)}\right]$
$=\left(\frac{1}{x-1}\right)\left[\frac{3 x+5-2 x-6}{(x+3)(3 x+5)}\right]$
$=\left(\frac{1}{x-1}\right)\left[\frac{x-1}{(x+3)(3 x+5)}\right]$
$=\frac{1}{(x+3)(3 x+5)}$
$=\frac{\text { or }}{3 x^{2}+14 x+15}$

$$
\text { c) } \begin{aligned}
& \frac{1}{2+h}-\frac{1}{2} \\
= & \frac{2-(2+h)}{2(2+h)} \\
= & \frac{-\not h 1}{2 h(2+h)} \\
= & \frac{-1}{2(2+h)}
\end{aligned}
$$

d) $\frac{(3+h)^{3}-27}{h}$

$$
=\frac{[(3+h)-3]\left[(3+h)^{2}+3(3+h)+9\right]}{h}
$$

$$
=\frac{k^{\prime}\left(h^{2}+6 h+9+9+3 h+9\right)}{K_{1}}
$$

$$
=h^{2}+9 h+27
$$

HW. Day 1 pg. 83 \#1 to 5 all and \#6 below.
6. Rationalize each of the following denominators to obtain an equivalent expression.
a) $\frac{x}{2-\sqrt{4+x}}$
b) $\frac{x}{\sqrt{x+5}-\sqrt{5-x}}$
c) $\frac{2 x-4}{\sqrt{7 x+2}-\sqrt{6 x+4}}$

Answers
6. a) $-2-\sqrt{4+x}$
b) $\frac{\sqrt{x+5}+\sqrt{5-x}}{2}$
c) $2(\sqrt{7 x+2}+\sqrt{6 x+4})$

slope formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

slope, y-intercept form

$$
y=m x+b
$$

standard form

$$
A x+B y+C=0
$$

Ex. 1. Find the slope m, in simplified form, of each pair of points.

$$
\begin{aligned}
& \text { a) }(-3,6) \text { and }(6,0) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{0-6}{b-(-3)} \\
& m=\frac{-6}{9} \\
& \therefore m=-\frac{2}{3}
\end{aligned}
$$

$$
\text { b) }\left(\frac{3}{4}, \frac{1}{4}\right) \text { and }\left(\frac{7}{4},-\frac{3}{4}\right)
$$

$$
m=\frac{-\frac{3}{4}-\frac{1}{4}}{\frac{7}{4}-\frac{3}{4}}
$$

$$
m=\frac{-1}{1}
$$

$$
\therefore m=-1
$$

Ex. 2. Find the equation of the line determined by the given information.
a) parallel to $x+4 y-2=0$ \& through $(-2,5)$
(1)

$$
\begin{gathered}
x+4 y-2=0 \\
4 y=-x+2 \\
y=-\frac{1}{4} x+\frac{1}{2} \\
m=-\frac{1}{4} \\
\therefore m_{\text {parallel }}=-\frac{1}{4} \\
\left(m / l=-\frac{1}{4}\right)
\end{gathered}
$$

$$
\frac{2}{2}=-\frac{1}{4}, b=
$$

\qquad

$$
x=-2, y=5
$$

$$
\text { Find } b: 5=-\frac{1}{4}(-2)+b
$$

$$
5=\frac{1}{2}+b
$$

$$
b=\frac{9}{2}
$$

b) through $(-5,3) \&(-1,2)$
(1) Find m : (2) $m=-\frac{1}{4}, b=$

$$
\begin{aligned}
& m=\frac{2-3}{-1-(-5)} \\
& m=\frac{-1}{4}
\end{aligned}
$$

$$
x=-1, \quad y=2
$$

$$
\text { Find } b:
$$

$$
2=-\frac{1}{4}(-1)+b
$$

$$
2=\frac{1}{4}+b
$$

$$
b=\frac{7}{4}
$$

Ex. 3. Find the slope m, in simplified form, of each pair of points.

$$
\begin{aligned}
& \therefore y=-\frac{1}{4} x+\frac{7}{4} \\
& \text { equa } \\
& \text { points. } \\
& \text { b) } P(9,3), Q(9+h, \sqrt{9+h}) \\
& m=\frac{\sqrt{9+h}-3}{9+h-9}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} x+\frac{7}{4} \text { is the } \\
& \text { equation. }(x+4 y-7=0)
\end{aligned}
$$

a) $P(1,3), Q(\underbrace{1+h}_{x_{2}}, \underbrace{3(1+h)^{2}}_{y_{2}})$

$$
m=\frac{3(1+h)^{2}-3}{1+h-1}
$$

$$
m=\frac{3(1+h)(1+h)-3}{h}
$$

$$
m=\frac{3\left(1+2 h+h^{2}\right)-3}{h}
$$

$$
m=\frac{3 h^{2}+6 h+3-3}{h}
$$

$$
m=\frac{3 h^{2}+6 h}{h}
$$

$$
\therefore m=3 n+6
$$

$$
\begin{aligned}
& \text { b) } \begin{aligned}
& P(9,3), Q(9+h, \sqrt{9+h}) \\
& m=\frac{\sqrt{9+h}-3}{9+h-9} \\
& m= \frac{\sqrt{9+h}-3}{h} \cdot \frac{\sqrt{9+h}+3}{\sqrt{9+h}+3} \\
& m=\frac{(9+h)-9}{h(\sqrt{9+h}+3)} \\
& m=\frac{h(1}{h(\sqrt{9+h}+3)} \\
& m=\frac{1}{\sqrt{9+h}+3}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } P(-2,2), Q\left(-2+h, \frac{4}{(-2+h)+4}\right) \\
& \text { d) } P(2,5), Q\left(2+h,(2+h)^{3}-(2+h)^{2}+1\right) \\
& m=\frac{\frac{4}{h+2}-2}{-2+h-(-2)} \cdot \frac{h+2}{h+2} \\
& m=\frac{(2+h)^{3}-(2+h)^{2}+1-5}{2+h-2} \\
& \left.m=\frac{* *}{(2+h)(2+h)(2+h)-(2+h)(2+h)-4}\right) h \\
& m=\frac{4-2(h+2)}{h(h+2)} \\
& m=\frac{\left(h^{3}+6 h^{2}+12 h+8\right)-\left(h^{2}+4 h+4\right)-4}{h} \\
& m=\frac{4-2 h-4}{h(h+2)} \\
& m=\frac{h^{3}+5 h^{2}+8 h}{h} \\
& m=h^{2}+5 h+8 \\
& \therefore m=\frac{-2}{n+2} \\
& (2+h)(2+h)(2+h) \\
& =(2+h)\left(4+4 h+h^{2}\right) \\
& =8+8 h+2 h^{2}+4 h+4 h^{2}+h^{3} \\
& =h^{3}+6 h^{2}+12 h+8
\end{aligned}
$$

H.W. Day 2 pg. 72 \#1 odd parts, 2 odd parts and \#3 below.
3. Find the slope m, in simplified form, of each pair of points.
a) $P(-2,0), Q\left(-2+h, 4-(-2+h)^{2}\right)$
b) $P(1,4), Q\left(1+h,(1+h)^{2}-6(1+h)+9\right)$
c) $P(-1,2), Q(-1+h, \sqrt{3-(-1+h)})$
d) $P\left(-3,-\frac{1}{3}\right), Q\left(-3+h, \frac{1}{-3+h}\right)$
е) $P(2,5), Q\left(2+h, \frac{2(2+h)+1}{(2+h)-1}\right)$
f) $P(1,1), Q\left(1+h, \frac{1}{\sqrt{1+h}}\right)$

Answers
3. a) $4-h$
b) $h-4$
c) $\frac{-1}{\sqrt{4-h}+2}$
d) $\frac{1}{3(h-3)}$
e) $\frac{-3}{1+h}$
f) $\frac{-1}{(\sqrt{1+h})(1+\sqrt{1+h})}$

Definitions:

Secants and Average Rates of Change

A secant is a line that passes through two points on the graph of a function $y=f(x)$. The average rate of change of y with respect to x is the slope of the secant between those points.
average rate of change $=m_{\text {secant }}$

$$
\begin{aligned}
& =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{\Delta y}{\Delta x} \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

Ex. 1. Given the graph of $h(x)=\frac{1}{x}$,
a) draw the secant line that passes through
$P(1,1)$ and $Q\left(4, \frac{1}{4}\right)$ and calculate its slope.

$$
\begin{aligned}
m & =\frac{\frac{1}{4}-1}{4-1} \\
& =\frac{-\frac{3}{4}}{3} \\
& =\frac{-3 \cdot}{4} \cdot \frac{1}{31}
\end{aligned} \quad \therefore=-\frac{1}{4}
$$

b) draw the tangent line to the curve at $P(1,1)$ and use the graph to estimate its slope.

$$
\begin{aligned}
& m_{t}=\frac{-1}{1} \\
& \therefore m_{t}=-1
\end{aligned}
$$

c) determine the equation of the tangent line to the curve at $P(1,1)$.

$$
\begin{aligned}
& \text { curve at } P(1,1) . \\
& m_{t}=-1, b=2 \\
& \therefore y=-x+2 \text { is the } \\
&\therefore y=1, y=1) \\
& \text { equation of the tangent. }
\end{aligned}
$$

Ex. 2. Consider the function $f(x)=x^{2}+2$.
a) Complete the following tables to estimate the slope of the tangent to $f(x)=x^{2}+2$ at point $P(2,6)$.
i) Q approaches P from the right, ie. $Q \rightarrow P^{+}$

P	Q	Slope of Line $P Q$
$(2,6)$	$(3,11)$	5
$(2,6)$	$(2.5,8.25)$	4.5
$(2,6)$	$(2.1,6.41)$	4.1
$(2,6)$	$(2.01,6.0401$	4.01

ii) Q approaches P from the left, ie. $Q \rightarrow P^{-}$

P	Q	Slope of Line $P Q$
$(2,6)$	$(1,3)$	3
$(2,6)$	$(1.5,4.25)$	3.5
$(2,6)$	$(1.9,5.61)$	3.9
$(2,6)$	$(1.99,5.9601)$	3.99

Conclusions: The slope of the tangent
b) Let Q be a point on the curve h units to the right of P and then calculate the slope of the secant $P Q$.

$$
\begin{aligned}
f(x) & =x^{2}+2 \\
f(2+h) & =(2+h)^{2}+2 \\
& =h^{2}+4 h+6
\end{aligned}
$$

$$
\begin{aligned}
& P(2,6), Q\left(2+h, h^{2}+4 h+6\right) \\
& m_{P Q}=\frac{h^{2}+4 h+6-6}{2+h-2} \\
& m_{P Q}=\frac{h^{2}+4 h}{h} \\
& \therefore m_{P Q}=h+4 \in \text { slope of } \\
& \text { the secant. }
\end{aligned}
$$

c) Use the result of part b) to calculate the slope of the tangent to the graph of $f(x)$ at point P.

$$
\begin{array}{rl}
\text { For of tangent: }: Q & \rightarrow P^{+} \text {, so } h \rightarrow 0 \\
\text { as } h & h 0, m_{P Q} \rightarrow 4 \\
& \therefore m_{t}=4
\end{array}
$$

Ex. 3. For each curve,
i) find the slope of the tangent at the given point
ii) find the equation of the tangent at the given point
iii) graph the curve and the tangent
a) $f(x)=\sqrt{x+3}$ at $P(-2,1)$
i) Let Q be a point on the curve h units to the right of P.

$$
P(-2,1) ; Q(-2+h, \sqrt{h+1})
$$

For secant:

$$
\begin{aligned}
& m_{P Q}=\frac{\sqrt{h+1}-1}{-2+h-(-2)} \cdot \frac{\sqrt{h+1}+1}{\sqrt{h+1}+1} \\
& m_{P Q}=\frac{(h+1)-1}{h(\sqrt{h+1}+1)} \\
& m_{P Q}=\frac{h^{1}}{h(\sqrt{h+1}+1)} \\
& \therefore m_{P Q}=\frac{1}{\sqrt{h+1}+1}
\end{aligned}
$$

For tangent:
$Q \rightarrow \mathrm{P}^{+}$, so $h \rightarrow 0$
as $h \rightarrow 0, m_{P Q} \rightarrow \frac{1}{2}$
b) $f(x)=\frac{x+1}{x+3}$ at $P\left(1, \frac{1}{2}\right)$

Let Q be a point on the curve hunits to the right of P.

$$
P\left(1, \frac{1}{2}\right) ; Q\left(1+h, \frac{h+2}{h+4}\right)
$$

For secant:

$$
\begin{aligned}
m_{P Q} & =\frac{\frac{h+2}{h+4}-\frac{1}{2}}{h} \cdot \frac{2(h+4)}{2(h+4)} \\
m_{P Q} & =\frac{2(h+2)-(h+4)}{2 h(h+4)} \\
m_{P Q} & =\frac{2 h+4-h+4}{2 h(h+4)} \\
m_{P Q} & =\frac{h 1}{2 K(h+4)} \\
\therefore m_{P Q} & =\frac{1}{2(h+4)}
\end{aligned}
$$

For tangent:

$$
Q \rightarrow P^{+} \text {so } h \rightarrow 0
$$

(il)

$$
\text { as } h \rightarrow 0, m_{P Q} \rightarrow \frac{1}{8} \quad \therefore m_{t}=\frac{1}{8}
$$

i()

$$
\text { Find } b: 1=\frac{1}{2}(-2)+b
$$

$$
1=-1+b
$$

$$
\therefore m_{t}=\frac{1}{2}
$$

$$
y=\frac{1}{2} x+2
$$

$$
\therefore b=2
$$

\therefore the equation of the tangent at $P(-2,1)$ is

$$
m_{t}=\frac{1}{2}, b=, x=-2, y=1
$$

$$
m_{t}=\frac{1}{8}, b=-
$$

$$
x=1, y=\frac{1}{2}
$$

Find 6 :

$$
\begin{aligned}
& \text { nd } b: \\
& \frac{1}{2}=\frac{1}{8}(1)+b \quad \therefore y=\frac{1}{8} x+\frac{3}{8} \\
& 4-\frac{1}{2}=h \quad \text { is the egiva }
\end{aligned}
$$

$$
\frac{4}{8}=\frac{1}{8}=b
$$

$\therefore b=\frac{3}{8}$
is the equation of the tangent at $\left(1, \frac{1}{2}\right)$.

HW. Worksheet on Secants and Tangents \#1 to 7

