Recall:

Secants and Average Rates of Change

A secant is a line that passes through two points on the graph of a function $y=f(x)$.
The average rate of change of y with respect to x is the slope of the secant between those points.
average rate of change $=m_{\text {secant }}$

$$
\begin{aligned}
& =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{\Delta y}{\Delta x} \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

Ex. 1. Find the slope and equation of the tangent to $f(x)=x-x^{3}$ at $x=-1$. Illustrate graphically.

$$
\text { ** } \begin{aligned}
f(-1+h) & =(-1+h)-(-1+h)^{3} \\
& =(h-1)-(h-1)\left(h^{2}-2 h+1\right) \\
& =(h-1)-\left(h^{3}-3 h^{2}+3 h-1\right) \\
& =-h^{3}+3 h-2 h
\end{aligned}
$$

i) Let Q be a point on the curve h units to the right of P. $P(-1,0) ; Q(-1+h, f(-1+h))$

For the secant:

$$
m_{P Q}=\frac{-h^{3}+3 h^{2}-2 h}{h}
$$

$$
\therefore m_{P Q}=-h^{2}+3 h-2
$$

$$
\begin{aligned}
\therefore m_{t}=-2
\end{aligned} \quad \therefore b=-2 . \quad \therefore \text { the equation of } \quad \begin{aligned}
& \quad \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Tangents and Instantaneous Rates of Change

A tangent is a line that touches the graph of a function $y=f(x)$ at exactly one point. the graph near that point.
The instantaneous rate of change of y with respect to x is the slope of the tangent at that point.
instantaneous rate of change $=m_{\text {tangent }}$

1

$$
P(-1,0) ; Q\left(-1+h,-h^{3}+3 h^{2}-2 h\right)
$$

$$
\text { ii) } m_{t}=-2, b=
$$

For the tangent:

$$
x=-1, y=0
$$

$$
\begin{aligned}
& \text { For the tangent: Find } b: \\
& Q \rightarrow P^{+} \text {, so } h \rightarrow 0 \\
& \quad 0=-2(-1)+b
\end{aligned}
$$

$$
\text { as } h \rightarrow 0, m_{P Q} \rightarrow-2
$$

$$
0=2+b
$$

The tangent is the straight line that most resembles

Ex. 2. A cliff diver in Acapulco, Mexico, dives from about 17 m above the water. The function $s(t)=-4.9 t^{2}+1.5 t+17$ models the diver's height above the water, in metres, at t seconds.
a) Determine the diver's average rate of descent with respect to time during each of the first two seconds. \longrightarrow slope of

$$
\begin{aligned}
\text { i) } m_{\text {secant }} & =\frac{s(1)-s(0)}{1-0} \\
v_{\text {avg }} & =\frac{13.6-17}{1-0} \\
v_{\text {avg }} & =-3.4
\end{aligned}
$$

$$
v_{\text {avg }}=\frac{13.6-17}{1-0} \text { inst se cong, the }
$$

$$
\begin{aligned}
& \text { average rate of } \\
& \text { descent is }
\end{aligned}
$$

descent is

$$
-3.4 \mathrm{~m} / \mathrm{s}
$$

Displacement versus time

$$
\text { ii) } \begin{aligned}
m_{\text {secant }} & =\frac{5(2)-5(1)}{2-1} \\
V_{\text {avg }} & =\frac{0.4-13.6}{1} \\
V \text { avg } & =-13.2
\end{aligned}
$$

\therefore during the $2^{\text {nd }}$ second the average rate of descent is b) Determine the diver's instantaneous rate of descent with respect to time at 1 second.
Find m_{t} at $t=1$:
Let Q be appoint on the curve h units to the right of P.

$$
\begin{aligned}
& P(1,13.6) ; Q(1+h, 5(1+h)) \\
& P(1,13.6) ; Q\left(1+h,-4.9 h^{2}-8.3 h+13.6\right)
\end{aligned}
$$

Forsecant:

$$
\begin{aligned}
& m_{P Q}=\frac{-4.9 h^{2}-8.3 h+13.6-13.6}{h} \\
& m_{P Q}=\frac{-4.9 h^{2}-8.3 h}{h} \\
& \therefore m_{P Q}=-4.9 h-8.3
\end{aligned}
$$

For tangent:
$Q \rightarrow P^{+}$, so $h \rightarrow 0$

$$
\text { as } h \rightarrow 0, m_{P Q} \rightarrow-8.3
$$

HW. Worksheet on Tangents and Applications of Rates of Change \#1 ace, 2, 5

1. Find the equation of the tangent to $f(x)=\frac{1}{x^{2}-1}$ at $x=2$. Illustrate your solution graphically.

To Graph $f(x)=\frac{1}{x^{2}-1}$
VA: $x^{2}-1=0$

$$
\begin{aligned}
& (x-1)(x+1)=0 \\
& \therefore x=1 \Sigma x=-1
\end{aligned}
$$

are the V.A.
$\frac{x \text {-int: }}{\text { none }}$

x	$f(x)$
-2	$\frac{1}{3}$
2	$\frac{1}{3}$

HA: $f(x)=\frac{1}{x^{2}-1} \div \frac{x^{2}}{x^{2}}$ $\therefore y$-int

$$
=\frac{\frac{1}{x^{2}}}{1-\frac{1}{x^{2}}}
$$

As $x \rightarrow \pm \infty, f(x) \rightarrow 0$

$$
\begin{gathered}
\therefore y=0 \text { is the } \\
\text { H.A. }
\end{gathered}
$$

Let Q be a point on the curve,

$$
\begin{array}{lrl}
h \text { units to the right of } P . & * f(2+h) & =\frac{1}{(2+h)^{2}-1} \\
P(2, f(2)) ; Q(2+h, f(2+h)) & & =\frac{1}{h^{2}+4 h+4-1} \\
P\left(2, \frac{1}{3}\right) ; Q\left(2+h, \frac{1}{\left.h^{2}+4 h+3\right)}\right. &
\end{array}
$$

For secant:

$$
\begin{aligned}
& m_{P Q}=\frac{\frac{1}{h^{2}+4 h+3}-\frac{1}{3}}{h} \cdot \frac{3\left(h^{2}+4 h+3\right)}{3\left(h^{2}+4 h+3\right)} \\
& m_{P Q}=\frac{3-\left(h^{2}+4 h+3\right)}{3 h\left(h^{2}+4 h+3\right)} \\
& m_{P Q}=\frac{-h^{2}-4 h}{3 h\left(h^{2}+4 h+3\right)} \\
& \therefore m_{P Q}=\frac{-h-4}{3\left(h^{2}+4 h+3\right)}
\end{aligned}
$$

$$
m_{t}=-\frac{4}{9}, b=
$$

$$
x=2, y=\frac{1}{3}
$$

For tangent:

$$
\begin{gathered}
Q \rightarrow P^{+} \text {, so } h \rightarrow 0 \\
\text { as } h \rightarrow 0 \text {, } m_{P Q} \rightarrow-\frac{4}{9} \\
\therefore m_{t}=-\frac{4}{9}
\end{gathered}
$$

Find b :

$$
\begin{aligned}
& \frac{1}{3}=-\frac{4}{9}(2)+b \\
& \frac{3}{9}=-\frac{8}{9}+b \\
& \frac{11}{9}=b \\
& \therefore y=-\frac{4}{9} x+\frac{11}{9} \text { is the } \\
& \therefore \text { of the }
\end{aligned}
$$

equation of the tangent at $x=2$.
2. A motorboat coasts toward a dock with its engine off. Its distance s, in metres, from the dock t seconds after the engine is turned off is $s(t)=\frac{10(6-t)}{t+3}$ for $0 \leq t \leq 6$.
a) Find the average velocity for $t \in[0,6] . \leftarrow$ interval notation
b) Find the boat's velocity when it bumps into the dock..

$$
\text { a) } \begin{aligned}
m_{\text {secant }} & =\frac{s(6)-s(0)}{6-0} \\
& =\frac{0-20}{6} \\
& =-\frac{10}{3}
\end{aligned}
$$

\therefore the average
velocity is $-\frac{10}{3} \mathrm{~m} / \mathrm{s}$
(or $-3 \frac{1}{3} \mathrm{~m} / \mathrm{s}$)
b) Find m_{t} at $t=6$:

Let Q be a point on the curve, hunits to the right of P.

$$
P(6,0), Q(6+h, 5(6+h))
$$

$$
\text { or } P(6,0) ; Q\left(6+h, \frac{-10 h}{h+9}\right)
$$

For secant:

$$
\begin{aligned}
& \text { secant: } \\
& m_{P Q}=\frac{\frac{-10 h}{h+9}-0}{h} \cdot \frac{h+9}{h+9} \\
& m_{P Q}=\frac{-10 h}{h(h+9)} \\
& \therefore m_{P Q}=\frac{-10}{h+9}
\end{aligned}
$$

\rightarrow For tangent:

$$
Q \rightarrow P^{+} \text {, sol } \rightarrow 0
$$

$$
\text { as } h \rightarrow 0, m_{P Q} \rightarrow \frac{-10}{9}
$$

$$
\therefore m_{t}=-\frac{10}{9}
$$

\therefore the boat's bumps the dock is $-1 \frac{1}{9} \mathrm{~m} / \mathrm{s}$.
3. It can be shown that from a height of s metres above ground level, a person can see a distance, d kilometres to the horizon, where $d(s)=3.53 \sqrt{s}$.
a) When the elevator of the CN Tower passes the 225 m height, how far can the passengers see across Lake Ontario?
b) Find the rate of change of this distance to the horizon with respect to height, when the height of the elevator is 225 m
a)

$$
\begin{aligned}
d(225) & =3,53 \sqrt{225} \\
& =52.95
\end{aligned}
$$

\therefore at a height of 225 m passengers can see 52.95 km across the Lake. For secant:
b) Find m_{t} at $s=225$

$$
\begin{aligned}
m_{P Q} & =\frac{12.4609(225+h)-2803.7025}{h(3.53 \sqrt{225+h}+52.95)} \\
m_{P Q} & =\frac{2803.7025+12.4609 h-2803.7025}{h(3.53 \sqrt{225+h}+52.95)}
\end{aligned}
$$

Let Q be appoint on the curve, h units to the right

$$
\therefore m_{P Q}=\frac{12.4609}{3.53 \sqrt{225 h}+52.95}
$$ of P.

$$
\begin{aligned}
& \text { of } P \text {. } \\
& P(225,52.95), Q(225+h, 3.53 \sqrt{225+h}))
\end{aligned}
$$

For tangent:

$$
Q \rightarrow P^{+}, 80 h \rightarrow 0
$$

$$
\text { as } h \rightarrow 0, m_{P_{Q}} \rightarrow \frac{353}{3000}
$$

$$
\therefore m_{t} \doteq 0.118
$$

\therefore the distance is changing at a rate of $0.118 \mathrm{~km} / \mathrm{m}$.
HW. Worksheet on Tangents and Applications of Rates of Change \#1bdf, 3, 4, 6 at a height of 225 m

Ex. 1. Given the function $y=-x^{2}-2 x+3$, find:
a) an expression for the slope of the tangent to the curve at any point (x, y) and illustrate graphically.
b) the slope of the tangent at $x=-3$ by using the formula obtained from part \mathbf{a}.
c) the point on the curve where the tangent is horizontal.
d) the equation of the normal at $x=-3$.

Note: The normal is the line perpendicular to the tangent at the point of tangency.
a) Let $f(x)=-x^{2}-2 x+3$

Find m_{t} at $P(x, f(x))$
Let Q be a point on the
curve, h units to the right of P.

$$
P\left(x,-x^{2}-2 x+3\right) ; Q\left(x+h,-x^{2}-2 x-h^{2}-2 x-2 h+3\right)
$$

$$
\begin{aligned}
& \text { For secant: } \\
& m_{P Q}=\frac{\left(-x^{2}-2 x h-h^{2}-2 x-2 h+3\right)-\left(-x^{2}-2 x+3\right)}{h} \\
& m_{P Q}=\frac{-2 x h-h^{2}-2 h}{h} \\
& \therefore m_{P Q}=-2 x-h-2
\end{aligned}
$$

$$
\begin{aligned}
f(x+h) & =-(x+h)^{2}-2(x+h)+3 \\
& =-x^{2}-2 x h-h^{2}-2 x-2 h+3
\end{aligned}
$$

For tangent: $Q \rightarrow P^{+}$, so $h \rightarrow 0$
as $h \rightarrow 0, m_{P Q} \rightarrow-2 x-2$
$\therefore m_{t}=-2 x-2$ for any point (x, y) on the curve
b) at $x=-3: m_{t}=-2(-3)-2$
d) at $x=-3, m_{t}=4$ (fro mb))

$$
\therefore m_{t}=4 \text { at } x=-3
$$

c) If tangent is horizontal

$$
m_{t}=0
$$

Find x if $m_{t}=0$

$$
\begin{aligned}
0 & =-2 x-2 \\
2 x & =-2 \\
\therefore x & =-1
\end{aligned}
$$

\therefore The tangent is horizontal
at the point $\frac{(-1,4)}{1}$

$$
m_{n}=-\frac{1}{4}, b=-, x=-3, y=0
$$

Find b :

$$
\begin{aligned}
0 & =-\frac{1}{4}(-3)+b \\
0 & =\frac{3}{4}+b \\
\therefore b & =-\frac{3}{4}
\end{aligned}
$$

\therefore the equation of the normal at $x=-3$ is

$$
y=-\frac{1}{4} x-\frac{3}{4}
$$

Ex. 2. An unoccupied test rocket meant for orbit is fired straight up from a launch pad. Something goes wrong and the rocket comes back down. The height of the rocket above the ground is modelled by $s(t)=5 t^{2}-\frac{1}{6} t^{3}, t \geq 0$, where s is measured in metres and t, in seconds.
a) Sketch the graph of the function. (Scale the horizontal axis only.)
b) Find an expression for the velocity (slope of the tangent) at any time, t.
c) When is the velocity (slope of the tangent) zero?
d) Find the maximum height of the rocket.
e) At what velocity does the rocket hit the ground?
a) $S(t)=5 t^{2}-\frac{1}{6} t^{3}$

For the t-intercepts, $s(t)=0$

$$
\begin{aligned}
5 t^{2}-\frac{1}{6} t^{3} & =0 \\
\text { xt) } \quad 30 t^{2}-t^{3} & =0 \\
\therefore-1) \quad t^{3}-30 t^{2} & =0 \\
t^{2}(t-30) & =0 \\
\therefore t=0 \text { or } t & =30
\end{aligned}
$$

double single
b) Find m_{t} at $P(t, s(t))$

Let Q be a point on the curve,

$$
\begin{aligned}
S(t+h) & =5(t+h)^{2}-\frac{1}{6}(t+h)^{3} \\
& =5\left(t^{2}+2 t h+h^{2}\right)-\frac{1}{6}(t+h)\left(t^{2}+2 t h+h^{2}\right) \\
& =5 t^{2}+10 t h+5 h^{2}-\frac{1}{6}\left(t^{3}+3 t h^{2}+3 t^{2} h+h^{3}\right) \\
& =5 t^{2}+10 t h+5 h^{2}-\frac{1}{6} t^{3}-\frac{1}{2} t h^{2}-\frac{1}{2} t^{2} h-\frac{1}{6} h^{3}
\end{aligned}
$$

h units to the right of P.

$$
P\left(t, S t^{2}-\frac{1}{6} t^{3}\right) ; Q\left(t+h, 5 t^{2}+10 t h+5 h^{2}-\frac{1}{6} t^{3}-\frac{1}{2} t h^{2}-\frac{1}{2} t^{2} h-\frac{1}{6} h^{3}\right)
$$ For Secant:

$$
\begin{aligned}
& \text { For Secant: } \\
& m_{P Q}=\frac{\left(5 t^{2}+10 t h+5 h^{2}-\frac{1}{6} h^{3}-\frac{1}{2}+h^{2}-\frac{1}{2} t^{2} h-\frac{1}{6} h^{3}\right)-\left(5 t^{2}-\frac{1}{6} t^{3}\right)}{h} \\
& m_{P Q}=\frac{10 t h+5 h^{2}-\frac{1}{2} t h^{2}-\frac{1}{2} t^{2} h-\frac{1}{6} h^{3}}{h}
\end{aligned}
$$

$$
\therefore m_{P Q}=10 t+5 h-\frac{1}{2} t h-\frac{1}{2} t^{2}-\frac{1}{6} h^{2}
$$

at any time, $t \geqslant 0$.
For tangent $Q \rightarrow P^{+}$, so $h \rightarrow 0$

$$
\text { as } h \rightarrow 0, m_{P Q} \rightarrow 10 t-\frac{1}{2} t^{2} \quad \text { a max } 1 m \text { of } 666 \frac{2}{3} \mathrm{~m}
$$

d) $S(20)=5(20)^{2}-\frac{1}{6}(20)^{3}$ $=666 \frac{2}{3}$
\therefore the rocket reaches a maximum height
at $t=0 \mathrm{sec}$ or $t=20 \mathrm{sec}$.

$$
\begin{gathered}
10 t-\frac{1}{2} t^{2}=0 \\
20 t-t^{2}=0 \\
t^{2}-20 t=0 \\
t(t-20)=0 \\
\therefore t=0 \text { or } t=20
\end{gathered}
$$

\therefore the velocity is zero
c) Find t when $m_{t}=0$

$$
\because m_{t}=10 t-\frac{1}{2} t^{2} \rightarrow \therefore v(t)=10 t-\frac{1}{2} t^{2} \mathrm{~m} / \mathrm{s}
$$

