UNIT 8: SECANTS, TANGENTS & RATES OF CHANGE

8.1 Review of Prerequisite Skills For Unit 8

I Review of Slopes and Equations of Lines

Slope: The slope is the measure of the steepness of a line.

 $slope = \frac{rise}{}$ *m* = -----

Equation of a Line: i) slope y-intercept form or ii) standard form

y = mx + b

 $Ax + By + C = 0, A, B, C \in I, A > 0$

Note:

ii) A *horizontal line* has a slope that is ______ and an equation of the form ______.

i) A *vertical line* has a slope that is ______ and an equation of the form ______.

iii) *Parallel lines* have slopes that are the ______.

iv) *Perpendicular lines* have slopes that are _____

Ex. 1. Find the equation of the line determined by the given information. a) slope -2, y-intercept 3 **b**) horizontal, through (-2,5)

c) perpendicular to 2x - 3y - 6 = 0& having an x-intercept of -2

d) through (-2,4) & (-6,6)

Date:_____

II <u>Rationalizing the Denominator or Numerator</u>

A *rational number* either repeats or terminates in its decimal form. An *irrational number* neither repeats nor terminates in its decimal form.

Ex. 2. Rationalize each *denominator*.

a)
$$\frac{1+2\sqrt{2}}{3\sqrt{2}}$$
 b) $\frac{\sqrt{3}}{1-2\sqrt{3}}$

Ex. 3. Rationalize each *numerator*.

a)
$$\frac{\sqrt{3}}{1-2\sqrt{3}}$$
 b) $\frac{1+2\sqrt{2}}{3\sqrt{2}}$

Ex. 4. Write an equivalent expression for a) by rationalizing the *numerator* and for b) by rationalizing the *denominator*.

a)
$$\frac{\sqrt{9+h-3}}{h}$$
 b) $\frac{x-3}{2-\sqrt{x+1}}$

III Simplifying Rational Expressions

Ex. 5. Simplify each of the following.

a)
$$\frac{x^2 - 16}{x^3 + 64}$$
 b) $\left(\frac{1}{x - 1}\right)\left(\frac{1}{x + 3} - \frac{2}{3x + 5}\right)$

$$\mathbf{c}) \quad \frac{\frac{1}{2+h} - \frac{1}{2}}{h}$$

d)
$$\frac{(3+h)^3-27}{h}$$

8.2 Slopes of Lines Given Two Points

Ex. 1. Find the slope *m*, in simplified form, of each pair of points.

a) (-3,6) and (6,0) **b**)
$$\left(\frac{3}{4}, \frac{1}{4}\right)$$
 and $\left(\frac{7}{4}, -\frac{3}{4}\right)$

Ex. 2. Find the equation of the line determined by the given information. **a)** parallel to x + 4y - 2 = 0 & through (-2, 5) **b)** through (-5, 3) & (-1, 2)

Ex. 3. Find the slope *m*, in simplified form, of each pair of points. **a)** $P(1, 3), Q(1+h, 3(1+h)^2)$ **b)** $P(9, 3), Q(9+h, \sqrt{9+h})$

c)
$$P(-2, 2), Q\left(-2+h, \frac{4}{(-2+h)+4}\right)$$

d) $P(2,5), Q(2+h, (2+h)^3 - (2+h)^2 + 1)$

<u>8.3 Slopes of Secants and Tangents</u> Average and Instantaneous Rates of Change

Definitions:

Secants and Average Rates of Change

A *secant* is a line that passes through two points on the graph of a function y = f(x). The *average rate of change* of y with respect to x is the *slope of the secant* between those points.

Tangents and Instantaneous Rates of Change

A *tangent* is a line that touches the graph of a function y = f(x) at exactly one point. The tangent is the straight line that most resembles the graph near that point. The *instantaneous rate of change* of y with

respect to x is the *slope of the tangent* at that point.

instantaneous rate of change $= m_{tangent}$

	У			
5		++		
-4-		++		
-3-	┣-┥	+-+		
2	$\downarrow \perp$			
	V_			
1 1		+		
1	1	2 3	4	5
X1		1.1		
-2-		++		
II				

average rate of change = m_{secant}

$$= \frac{change in y}{change in x}$$
$$= \frac{\Delta y}{\Delta x}$$
$$= \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Ex. 1. Given the graph of $h(x) = \frac{1}{x}$,

a) draw the secant line that passes through

$$P(1,1)$$
 and $Q\left(4,\frac{1}{4}\right)$ and calculate its slope.

- **b**) draw the tangent line to the curve at P(1,1) and use the graph to estimate its slope.
- c) determine the equation of the tangent line to the curve at P(1,1).

- **Ex. 2.** Consider the function $f(x) = x^2 + 2$.
 - a) Complete the following tables to estimate the slope of the tangent to $f(x) = x^2 + 2$ at point P(2,6).
 - i) Q approaches P from the right, ie. $Q \rightarrow P^+$

Р	Q	Slope of Line PQ
(2, 6)	(3,	
(2, 6)	(2.5,	
(2, 6)	(2.1,	
(2, 6)	(2.01,	

	-	-10	<u></u>		
		-9-			
	++	-7-		\downarrow	
		6			
y = 1	(x)	4			
		N	4_		
		-1-			
-4	3 -2 -	-1 0	1	2 3	4

ii) Q approaches P from the left, ie. $Q \rightarrow P^-$

Р	Q	Slope of Line PQ
(2, 6)	(1,	
(2, 6)	(1.5,	
(2, 6)	(1.9,	
(2, 6)	(1.99,	

Conclusions:

b) Let Q be a point on the curve h units to the right of P and then calculate the slope of the secant PQ.

c) Use the result of part b) to calculate the slope of the tangent to the graph of f(x) at point *P*.

Ex. 3. For each curve,

- i) find the slope of the tangent at the given point
- ii) find the equation of the tangent at the given pointiii) graph the curve and the tangent

a)
$$f(x) = \sqrt{x+3}$$
 at $P(-2,1)$

b)
$$f(x) = \frac{x+1}{x+3}$$
 at $P(1, \frac{1}{2})$

Recall:

Secants and Average Rates of Change

A *secant* is a line that passes through two points on the graph of a function y = f(x). The *average rate of change* of y with respect to x is the *slope of the secant* between those points.

Tangents and Instantaneous Rates of Change

A *tangent* is a line that touches the graph of a function y = f(x) at exactly one point. The tangent is the straight line that most resembles the graph near that point. The *instantaneous rate of change* of y with

respect to x is the *slope of the tangent* at that point.

instantaneous rate of change $= m_{tangent}$

average rate of change = m_{secant}

$$= \frac{change in y}{change in x}$$
$$= \frac{\Delta y}{\Delta x}$$
$$= \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Ex. 1. Find the slope and equation of the tangent to $f(x) = x - x^3$ at x = -1. Illustrate graphically.

- **Ex. 2.** A cliff diver in Acapulco, Mexico, dives from about 17 m above the water. The function $s(t) = -4.9t^2 + 1.5t + 17$ models the diver's height above the water, in metres, at *t* seconds.
 - a) Determine the diver's average rate of descent with respect to time during each of the first two seconds.

b) Determine the diver's instantaneous rate of descent with respect to time at 1 second.

Warmup

1. Find the equation of the tangent to $f(x) = \frac{1}{x^2 - 1}$ at x = 2. Illustrate your solution graphically.

- 2. A motorboat coasts toward a dock with its engine off. Its distance *s*, in metres, from the dock *t* seconds after the engine is turned off is $s(t) = \frac{10(6-t)}{t+3}$ for $0 \le t \le 6$.
 - **a**) Find the average velocity for $t \in [0, 6]$.
 - **b**) Find the boat's velocity when it bumps into the dock..

- 3. It can be shown that from a height of *s* metres above ground level, a person can see a distance, *d* kilometres to the horizon, where $d(s) = 3.53\sqrt{s}$.
 - a) When the elevator of the CN Tower passes the 225 m height, how far can the passengers see across Lake Ontario?
 - **b**) Find the rate of change of this distance to the horizon with respect to height, when the height of the elevator is 225 m

Ex. 1. Given the function $y = -x^2 - 2x + 3$, find:

- a) an expression for the slope of the tangent to the curve at any point (x, y) and illustrate graphically.
- **b**) the slope of the tangent at x = -3 by using the formula obtained from part **a**.
- c) the point on the curve where the tangent is horizontal.
- d) the equation of the *normal* at x = -3. Note: The *normal* is the line perpendicular to the tangent at the point of tangency.

Ex. 2. An unoccupied test rocket meant for orbit is fired straight up from a launch pad. Something goes wrong and the rocket comes back down. The height of the rocket above the ground is

modelled by $s(t) = 5t^2 - \frac{1}{6}t^3$, $t \ge 0$, where *s* is measured in metres and *t*, in seconds.

- a) Sketch the graph of the function. (Scale the horizontal axis only.)
- **b**) Find an expression for the **velocity** (slope of the tangent) at any time, *t*.
- c) When is the velocity (slope of the tangent) zero?
- **d**) Find the maximum height of the rocket.
- e) At what velocity does the rocket hit the ground?

The Ultimate Warmup

1. Find the equation of the tangent to $f(x) = \frac{x}{2-\sqrt{4+x}}$ at x = 5. Illustrate your solution graphically. *Hint:* Simplify the function by rationalizing the denominator and identify any holes.

2. Find the equation of the tangent to $f(x) = \frac{x^3 - 6x^2 + 12x - 8}{|x - 2|}$ at x = -1. Illustrate your solution

graphically. *Hint: Rewrite the function as a piecewise function first.*

3. Find the equations of the tangent and normal to $g(x) = \frac{2x^2 - 3x + 1}{x^2 - 1}$ at x = -2. Illustrate your solution graphically. *Hint: Simplify the function first and identify any holes.*

- 4. Given the function $f(x) = \frac{x^2}{x-1}$, find:
 - a) an expression for the slope of the tangent to the curve at any point (x, y) and illustrate graphically.
 - **b**) the slope of the tangent at x = -3 by using the formula obtained from part **a**.
 - c) the point(s) on the curve where the tangent is horizontal.
 - **d**) where on the curve the normal has a slope of $\frac{3}{2}$.

