\qquad

Perimeter, Area \& Volume

Use your EQAO formula sheet and calculator for this part of the review. (Recall: $\pi \approx 3.14159$)

1. For each of the following figures, find the perimeter and area, to one decimal place.
a)

b)

c)

$$
\begin{aligned}
P & =14+\frac{\pi d}{2}+14+6 & A_{\text {total }} & =A_{(1)}+A_{(2)} \\
& =34+\frac{\pi(6)^{3}}{3} & & =1 w+\frac{\pi r^{2}}{2}
\end{aligned}
$$

$$
=34+3 \pi
$$

$$
=43.4
$$

$$
\therefore P \doteq 43.4 \mathrm{~m} .
$$

$$
\begin{aligned}
& =14(6)+\frac{\pi(3)^{2}}{2} \\
& =98.1 \\
\therefore A & =98.1 \mathrm{~m}^{2} .
\end{aligned}
$$

$P=8+10+6$

$$
=24
$$

2. Calculate the area of the shaded region.
a)

10 cm

$A_{\text {shaded }}=A_{\text {square }}-A_{\text {circle }}$

$$
=s^{2}-\pi r^{2}
$$

$$
=(10)^{2}-\pi(4)^{2}
$$

$$
=49.7
$$

\therefore the shaded area is approximately $49.7 \mathrm{~cm}^{2}$.
b)

$$
\begin{aligned}
A_{\text {shaded }} & =A_{\text {hexagon }}-A_{\text {triangle }} \\
& =6\left(\frac{b h}{2}\right)-\frac{b h}{2} \\
& =5\left(\frac{b h}{2}\right) \\
& =5\left[\frac{(1.4)(7.2)}{2}\right] \\
& =151.2
\end{aligned}
$$

\therefore the shaded area is $151.2 \mathrm{~cm}^{2}$.
3. For each of the following, calculate the total surface area and volume, to one decimal place.
a)

$$
\begin{aligned}
S A & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi(1.5)^{2}+2 \pi(1.5)(4.5)
\end{aligned}
$$

$$
\doteq 56.5
$$

$$
\therefore S A=56.5 \mathrm{~m}^{2}
$$

$$
V=\pi r^{2} h
$$

$$
=\pi(1.5)^{2}(4.5)
$$

$$
\begin{aligned}
S A & =2(w h+1 w+1 h) \\
& =2[(6.5)(9.5)+18(6.5)+18(9.5)] \\
& =699.5 \\
\therefore S A & =699.5 \mathrm{~cm}^{2} . \\
V & =1 w h \\
& =18(6.5)(9.5) \\
& =1111.5 \\
\therefore V & =1111.5 \mathrm{~cm}^{3} .
\end{aligned}
$$

$$
\doteq 31.8
$$

$$
\therefore V=31.8 \mathrm{~m}^{3} .
$$

4. Find the volume of ice cream needed for the cone and scoop shown below, to the nearest whole number.

$$
\begin{aligned}
V_{\text {total }} & =V_{\text {hemisphere }}+V_{\text {cone }} \\
& =\frac{1}{2}\left(\frac{14 \pi r^{3}}{3}\right)+\frac{\pi r^{2} h}{3} \\
& =\frac{2 \pi(3)^{3}}{3}+\frac{\pi(3)^{2}(10)}{3} \\
& \left.=\frac{2 \pi(27)}{31}+\frac{\pi\left(1^{3}\right)(10)}{31}\right] \\
& =18 \pi+30 \pi \\
& =48 \pi \\
& =151
\end{aligned}
$$

\therefore the volume of ice cream needed is approximately $151 \mathrm{~cm}^{3}$.
\qquad

Analytic Geometry

1. Fill in the blanks.
a) When data plotted on a grid falls to the right, this is described as \qquad negative correlation.
b) In which quadrant are x-coordinates negative and y-coordinates positive? II
c) The point $(8,0)$ is on the \qquad x -axis. The coordinates of the origin are \qquad $(0,0)$.
d) The slope of all vertical lines is \qquad undefined . The slope of all horizontal lines is \qquad .
e) Lines that rise to the right have \qquad positive slopes.
f) In the line $y=-3 x+7$, the slope is -3 and the y-intercept is \qquad 7 .
g) The equation of the line with slope $\frac{2}{3}$ and y-intercept 6 , in $y=m x+b$ form is \qquad .
h) The rise can be found by calculating the difference in the \qquad y -coordinates.
i) A vertical line has a run of \qquad .
j) A relation of the form $y=m x$ shows \qquad direct variation, while a relation of the form $y=m x+b$ shows __ Partial__ variation.
k) For a house call, a plumber charges according to the relation $C=35 t+40$ where C is the charge in dollars and t is time in hours. The fixed charge is $\$ 40$ and the hourly rate is $\$ 35$
\qquad
\qquad .
I) The slope of any line parallel to $y=-7 x+2$ is \qquad . The slope of any line perpendicular to $y=-7 x+2$ is $\frac{1}{7}$.
\qquad .
2. Graph the following lines on the given grids using the indicated method.
a) $y=5 x-2$ (table of values)
b) $\quad 5 x-7 y=0$
(method of your choice) $\begin{aligned} \frac{-7 y}{-7} & =\frac{-5 x}{-7} \\ y & =\frac{5}{7} x\end{aligned}$
$m=\frac{5}{7}$
$b=0$

c) $y=-\frac{5}{4} x+3$ (slope, y-intercept method)
d) $4 x-3 y+12=0$
(x - and y-intercept method - show your work)

$$
\text { Slope }=-\frac{5}{4} y \text {-intercept }=3
$$

$$
\begin{array}{cc}
\text { For } x \text {-int, let } y=0 & \text { For } y \text {-int, let } x=0 \\
\begin{array}{cc}
4 x+12=0 & \frac{-3 y}{}=\frac{-12}{-3} \\
\frac{4 x}{4}=\frac{-12}{4} & y=4 \\
x=-3 & {[\text { Plot }(0,4)]}
\end{array}
\end{array}
$$

e) Using the equations from b) and c), solve by comparison to determine the exact point of intersection.

$$
\begin{aligned}
& 5 x-7 y=0 \\
&-7 y=\frac{-5 x}{-7} \\
&-7=\frac{5}{7} x \\
& y=-\frac{5}{4} x+3
\end{aligned}
$$

3. Graph on the same set of axes.

$$
\begin{array}{rlrl}
\text { Sub (1) into (2) } & & \text { Sub } x=\frac{84}{55} \text { into (1) } \\
\frac{5}{7} x & =-\frac{5}{4} x+3 & & =\frac{5^{\prime}}{7_{1}}\left(\frac{84}{55}\right)^{12} \\
28\left(\frac{5}{7_{1}} x\right) & =\frac{28}{28}\left(-\frac{5}{4} x\right)+28(3) & & =\frac{12}{11} \\
20 x & =-35 x+84 & & \text { the exact point of } \\
20 x+35 x & =84 & & \text { intersection is }\left(\frac{84}{55}, \frac{12}{11}\right) . \\
\frac{55 x}{55} & =\frac{84}{55} & & \\
x & =\frac{84}{55} & &
\end{array}
$$

a) $x=5$
b) $y=0$
c) $y+8=0 \quad y=-8$
d) $5 x-30=0 \frac{5 x}{5}=\frac{30}{5}$ $x=6$

4. State the slope and y-intercept for each of the following.
a) $y=5 x+2$
$m=5$
$b=2$
b) $y=-\frac{1}{2} x$
$m=-\frac{1}{2}$
$b=0$
c) $y=\frac{3}{5} x-8$
$m=\frac{3}{5}$
$b=-8$
d) $y=10$
$m=0$
$m=0$
$b=10$
5. Change to slope, y-intercept form. Then, state the slope and y-intercept.
a) $2 x-3 y+15=0$
b) $y-15=0$
c) $15 x+25 y-30=0$

$$
\frac{-3 y}{-3}=\frac{-2 x-15}{-3}
$$

$$
\begin{array}{ll}
\frac{3 y}{-3}=\frac{-2 x-15}{-3} & y=15 \\
y=\frac{2}{3} x+5 & m=0 \\
m=\frac{2}{3} & b=15 \\
b=5 &
\end{array}
$$

$$
\begin{aligned}
\frac{25 y}{25} & =\frac{-15 x+30}{25} \\
y & =-\frac{3}{5} x+\frac{6}{5} \\
m & =-\frac{3}{5} \\
b & =\frac{6}{5}
\end{aligned}
$$

6. By graphing, determine the point of intersection of the lines $y=2 x-2$ and $3 x+y=13$.

$$
\begin{aligned}
& y=2 x-2 \\
& m=\frac{2}{1} \\
& b=-2
\end{aligned}
$$

8. Using the slope formula, determine the slope of the line through each set of points.
a) $(1,3)$ and $(5,2)$
b) $(-2,7)$ and $(-5,-1)$
c) $(4,5)$ and $(-6,5)$
d) $(-2,6)$ and $(-2,-6)$ $m=\frac{2-3}{5-1}$
$m=\frac{-1-7}{-5+2}$
$m=\frac{5-5}{-6-4}$
$m=\frac{-6-6}{-2+2}$
$=\frac{-1}{4}$
$=\frac{-8}{-3}$
$=\frac{0}{-10}$
$=\frac{-12}{0}$
$=0$
$\therefore m$ is undefined.
9. State the equation of each line below.
a) $y=-\frac{3}{4} x+3$
b) $y=3$
c) $y=20 x$

10. Find the equation of each line in the form $y=m x+b$.
a) with slope 5 and y-intercept -10

$$
\because m=5 \text { and } b=-10, \therefore y=5 x-10 .
$$

b) with y-intercept 6 and perpendicular to the line $y=\frac{2}{5} x-10$

$$
m=\frac{2}{5} \therefore m_{1}=-\frac{5}{2} \quad \because m=-\frac{5}{2} \text { and } b=6 \therefore y=-\frac{5}{2} x+6
$$

c) through the point $(0,-2)$ and parallel to the line $y=-4 x+7$

$$
\begin{aligned}
& m=-4 \therefore m_{H 1}=-4 \quad \because(0,-2) \text { is the } y \text {-int, } b=-2 . \\
& \because m=-4 \text { and } b=-2 \therefore y=-4 x-2 .
\end{aligned}
$$

d) with slope $\frac{1}{3}$ and passing through $(6,-2)$

$$
\begin{aligned}
m & =\frac{1}{3} \quad b=? x=6 \quad y=-2 \\
y & =m x+b \\
-2 & =\frac{1}{3}(6)+b \\
-2 & =2+b \\
-2-2 & =b \\
-4 & =b \\
y & =\frac{1}{2} x-4 .
\end{aligned}
$$

e) passing through points $(-2,3)$ and $(5,-3)$

$$
\begin{array}{rlrl}
\text { Find } m . & & \text { Find } b . \\
m=\frac{-3-3}{5+2} & m & =-\frac{6}{7} \quad b=? x=-2 y=3 \\
= & y & =m x+b \\
=-\frac{-6}{7} & 3 & =-\frac{6}{7}(-2)+b \\
3 & =\frac{12}{7}+b \\
3-\frac{12}{7} & =b \\
\frac{21}{7}-\frac{12}{7} & =b \\
\frac{9}{7} & =b
\end{array}
$$

f) perpendicular to $y=-\frac{1}{2} x+6$ with the same y-intercept as the line $y=3 x-2$

$$
m=-\frac{1}{2} \therefore m_{1}=2 \quad \because m=2 \text { and } b=-2 \quad \therefore y=2 x-2
$$

11. A house is expected to increase in value according to the relation $y=6500 x+150000$ where y is the value of the house, in dollars, after x years.
a) Find the slope of the line and interpret its meaning.
$m=6500(\$)$ This means the value of the house increases by $\$ 6500$ every year.
b) Find the y-intercept and interpret its meaning.
$b=150000(\$)$ This means the house was initially Worth \$ 150000 .
c) Find the value of the house after 12 years.

Let $x=12$
$y=6500(12)+150000$
$=228000$
\therefore the value of the house after 12 years is $\$ 228000$.
12. Jeff's family is driving home from a camping trip. They are using cruise control so their speed is constant. After 1 hour, they are 250 km away from home. After 3 hours, they are 50 km from home.
a) What is the independent variable?
b) What is the dependent variable?
time (h)
c) Represent the given information as two ordered pairs.
$(1,250) \quad(3,50)$
d) Write an equation for the relation in the form $y=m x+b$.

Find m.

$$
\begin{aligned}
m & =\frac{50-250}{3-1} \\
& =\frac{-200}{2} \\
& =-100
\end{aligned}
$$

Find b.

$$
m=-100 \quad b=? \quad x=1 \quad y=250
$$

$$
y=m x+b
$$

$250=-100(1)+b \quad . y=-100 x+350$.
$250+100=b$

$$
350=b
$$

e) Interpret the meaning of the slope and y-intercept in this situation.
$m=-100$ This means Jeff's family is travelling $100 \mathrm{~km} / \mathrm{h}$. towards home. $b=350$ This means the camping trip was 350 km away from hame.
13. Using $1^{\text {st }}$ differences, determine whether the following models represent linear or non-linear relations. Give a reason for your choice.
a)

x	y	Δy
0	-11	$-11+6=-5$
-1	-6	$-6+1=-5$
-2	-1	$-1-4=-5$
-3	4	$4-9=-5$
-4	9	

Type linear
Reason first differences are constant
b)

x	y	Δy
3	18	$18-11=7$
2	11	$11-6=5$
1	6	$6-3=3$
0	3	$3-2=1$

Type non-linear
Reason first differences are not constant
14. Which of the following relations are linear?

Vertical line horizontal line
b) $y=x^{2}+5$
a) $y=2 x-5$
[second degree]
c) $x=9$
d) $y-7=0$
e) $x^{2}+y^{2}=25$
[$1^{\text {st }}$ degree]
[$1^{\text {st }}$ degree] [$1^{\text {st }}$ degree] [second degree]
15. Graph the relation $y=x^{2}-7$ using a table of values for values of x of $-2,-1,0,1,2$.

x	y
-2	-3
-1	-6
0	-7
1	-6
2	-3

16. A plumber charges $\$ 35$ for a house call and an hourly rate of $\$ 50 / \mathrm{h}$. Write an equation representing the total charges. Introduce variables using "let statements" then graph the relation for up to 6 hours. Let y represent the total charges, in $\$$. Let x represent time, in hours.

$$
\begin{aligned}
& y=50 x+35 \\
& m=50 \\
& b=35
\end{aligned}
$$

Total Charges vs. Time
or...

$x(h)$	$y(\$)$
0	35
1	85
2	135
3	185
4	235
5	285
6	335

