

The vector equation of a plane can be determined by one point and two non-parallel vectors.

Let $P(x, y, z)$ be any point in the plane $\pi, P_{1}\left(x_{1}, y_{1} z_{1}\right)$ be a particular point in the plane and vectors \vec{a} and \vec{b} be two non-parallel direction vectors in the plane.

$$
\begin{aligned}
& \overrightarrow{O P}=\overrightarrow{O P}+\Delta \vec{a}+t \vec{b}, \Delta, t \in R \\
& \vec{r}=\vec{r}_{1}+\Delta \vec{a}+t \vec{b}
\end{aligned}
$$

SUMMARY OF EQUATIONS OF PLANES IN 3-SPACE:

Vector Equation

$\vec{r}=\vec{r}_{1}+s \vec{a}+t \vec{b}$
or
$(x, y, z)=\left(x_{1}, y_{1}, z_{1}\right)+s\left(a_{1}, a_{2}, a_{3}\right)+t\left(b_{1}, b_{2}, b_{3}\right)$

Parametric Equations

$$
\begin{aligned}
& x=x_{1}+a_{1} s+b_{1} t \\
& y=y_{1}+a_{2} s+b_{2} t \\
& z=z_{1}+a_{3} s+b_{3} t
\end{aligned}
$$

where (x, y, z) is the position vector of any point in the plane
$\left(x_{1}, y_{1}, z_{1}\right)$ is the position vector of some particular point in the plane \vec{a} and \vec{b} are two non-parallel direction vectors for the plane
and

$$
s, t \in \mathfrak{R} \quad \text { are the parameters. }
$$

Ex. 1. Determine the vector and parametric equations of the plane through the points $F(-3,7,1), G(-1,2,-3)$ and $H(5,-1,-2)$.

$$
\begin{aligned}
& \vec{r}_{1}=\overrightarrow{o F} \\
& =(-3,7,1) \\
& \vec{a}=\overrightarrow{F G}
\end{aligned}
$$

vector equation:

$$
\begin{aligned}
& \vec{r}=\overrightarrow{r_{1}}+A \vec{a}+t \vec{b} \\
& \vec{r}=(-3,7,1)+A(2,-5,-4)+t(6,-3,1), \Delta, t
\end{aligned}
$$

parametric equations:

$$
=\overrightarrow{O G}-\overrightarrow{O F}
$$

$$
=(-1,2,-3)-(-3,7,1)
$$

$$
=(2,-5,-4)
$$

$\vec{b}=\overrightarrow{G H}$

$$
\begin{aligned}
& =\overrightarrow{O H}-\overrightarrow{O G} \\
& =(5,-1,-2)-(-1,2,-3) \\
& =(6,-3,1)
\end{aligned}
$$

$$
\begin{aligned}
& x=-3+2 A+6 t \\
& y=7-5 A-3 t \\
& z=1-4 A+t
\end{aligned}
$$

Ex. 2. Determine the vector equation of the plane containing the point $P(-2,3,5)$ and the line $\vec{r}=(-1,4,3)+t(-1,-3,6), t \in \mathfrak{R}$.

$$
\begin{aligned}
& \quad \begin{array}{l}
P(-2,3,5) \\
\vec{Q}(-1,4,3)
\end{array} \\
& \vec{r}=(-1,4,3)+t(-1,-3,6) \\
& \overrightarrow{r_{1}}=\overrightarrow{O P} \\
& =(-2,3,5) \\
& \vec{a}=(-1,-3,6) \\
& \vec{b}=\overrightarrow{P Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =(-1,4,3)-(-2,3,5) \\
& =(1,1,-2)
\end{aligned}
$$

vector equation:

$$
\begin{aligned}
\vec{r} & =\vec{r}_{1}+s \vec{a}+t \vec{b}, \Delta, t \in R \\
\therefore \vec{r} & =(-2,3,5)+\Delta(-1,-3,6)+t(1,1,-2), \\
& s, t \in R .
\end{aligned}
$$

Ex. 3. Find the vector equation of the plane that contains the two lines
$\vec{r}=(1,2,3)+s(2,4,-1), s \in \mathfrak{R}$ and $\vec{r}=(4,5,1)+t(-2,-4,1), t \in \mathfrak{R}$.

Nate: $\quad L_{1} \| L_{2}$
Let points

$$
P(1,2,3): Q(4,5,1)
$$

Vector Equation:

$$
\vec{r}=\vec{r}_{1}+\Delta \vec{a}+t \vec{b}, A, t \in \mathbb{R}
$$

be points in the plane: $\therefore \vec{r}=(1,2,3)+\infty(2,4,-1)+t(3,3,-2)$,

$$
\begin{aligned}
\vec{r}_{1} & =\overrightarrow{O P} \\
& =(1,2,3) \\
\vec{a} & =(2,4,-1) \\
\vec{b} & =\overrightarrow{P Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =(4,5,1)-(1,2,3) \\
& =(3,3,-2)
\end{aligned}
$$

Ex. 4. Does the point $(1,5,3)$ lie in the plane $\vec{r}=(4,-3,1)+s(3,1,-2)+t(6,5,-1), s, t \in \mathfrak{R}$?
Sub $(1,5,3)$ for \vec{r} solve for $s \dot{s} . t$

$$
\begin{gathered}
(1,5,3)=(4,-3,1)+A(3,1,-2)+t(6,5,-1) \\
(1,5,3)-(4,-3,1)=A(3,1,-2)+t(6,5,-1) \\
(-3,8,2)=A(3,1,-2)+t(6,5,-1)
\end{gathered}
$$

$$
\begin{equation*}
-3=3 A+6 t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
8=\theta+5 t \tag{2}
\end{equation*}
$$

$$
2=-2 A-t(3)
$$

Solve (2) $\dot{\varepsilon}$ (3)
Eliminate" t "
(2) $\times 1 \quad 8=x+5 t$
(3) $\times 5 \quad 10=-10 \Delta-5 t$

Add $18=-9 \Delta$

$$
-2=A
$$

Sub in (3)

$$
\begin{aligned}
& 2=-2(-2)-t \\
& t=4-2 \\
& t=2
\end{aligned}
$$

Check in (1)

$$
\begin{array}{ll}
\begin{array}{ll}
A=-2 \dot{\text { E. }} \text { t } & =2 \\
\text { L.S. } & \\
=-3 \cdot S . & \\
& =3 \Delta+6 t \\
& =3(-2)+6(2) \\
& =-6+12
\end{array}
\end{array}
$$

$$
-6
$$

$\therefore L . S \neq R . S$.
the point $(1,5,3)$ does not lie in the plane.

A normal vector to a plane is a vector that is perpendicular to every vector in the plane.

Find the general equation of a plane containing the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ with normal vector $\vec{n}=(A, B, C)$.

$$
\left(x-x_{1}, y-y_{1}, z-z_{1}\right) \cdot(A, B, C)=0
$$

$$
\begin{aligned}
\overrightarrow{P_{1} P} & =\overrightarrow{O P}-\overrightarrow{O P} \\
& =(x, y, z)-\left(x_{1}, y_{1}, z\right) \\
& =\left(x-x_{1}, y-y_{1}, z-z_{1}\right)
\end{aligned}
$$

$$
A x-A x_{1}+B y-B y_{1}+C z-C z_{1}=0
$$

$$
A x+B y+C z-A x_{1}-B y_{1}-C z_{1}=0 \text {, Let } D=-A x_{1}-B y_{1}-C z_{1}
$$

$$
\begin{aligned}
& \therefore A x+B y+C z+D=0 \text { is the } \\
& \text { scalar or Cartesian equation of a plane. }
\end{aligned}
$$ Note: $\vec{n}=(A, B, C)$

Parallel Planes

Perpendicular Planes

If $\pi_{1} \| \pi_{2}$ then $\vec{n}_{1} \| \vec{n}_{2}$ where $\vec{n}_{1}=k \vec{n}_{2}$.
If $\pi_{1} \perp \pi_{2}$ then $\vec{n}_{1} \perp \vec{n}_{2}$ where $\vec{n}_{1} \cdot \vec{n}_{2}=0$.

SUMMARY: The scalar or Cartesian equation of a plane in space has the form

$$
A x+B y+C z+D=0
$$

where (A, B, C) is a vector normal to the plane.

Ex. 1. Find the scalar equation of the plane through the point $A(-2,1,3)$ having a normal vector

$$
\begin{gathered}
\vec{n}=(4,-2,5) . \\
A B C
\end{gathered}
$$

$$
x y z
$$

$$
\begin{gathered}
A x+B y+C z+D=0 \\
\text { tx } x-2 y+5 z+D=0 \\
\text { Find if } x=-2, y=1, z=3 \\
4(-2)-2(1)+5(3)+D=0 \\
D=-5
\end{gathered}
$$

\therefore the scalar equation of the plane is

$$
4 x-2 y+5 z-5=0
$$

Ex. 2. Find the Cartesian equation of the plane that passes through the points $A(-2,3,1), B(-1,2,-1)$ and $C(1,-2,3)$.

$$
\begin{aligned}
\vec{a} & =\overrightarrow{A B} \\
& =\overrightarrow{O B}-\overrightarrow{O A} \\
& =(-1,2,-1)-(-2,3,1) \\
\vec{a} & =(1,-1,-2) \\
\vec{b} & =\overrightarrow{A C} \\
& =\overrightarrow{O C}-\overrightarrow{O A} \\
\vec{b} & =(1,-2,3)-(-2,3,1) \\
\therefore \vec{b} & =(3,-5,2) \\
\vec{n} & =\vec{a} \times \vec{b} \\
& =(-12,-8,2)
\end{aligned}
$$

$$
\begin{gathered}
\text { Use } \vec{n}=(6,4,1) \dot{B}(-1,2,-1) \\
A, B C, \quad x y^{\prime} z \\
A x+B y+C z+D=0 \\
\text { Find } D \\
6(-1)+4(2)+1(-1)+D=0 \\
-6+8-1+D=0 \\
D=-1
\end{gathered}
$$

\therefore the Cartesian equation of the plane is

$$
6 x+4 y+z-1=0
$$

Ex. 3. Find the scalar equation of the plane containing the point $Q(1,2,-1)$ and the line

$$
\begin{array}{cc}
\text { Use } \vec{n}=(3,3,1) & \vdots \\
A B C & Q(1,2,-1) \\
x y z
\end{array}
$$

$$
\begin{gathered}
A x+B y+C z+D=0 \\
F \operatorname{lnd}(D)+1(-1)+D=0 \\
3(1)+3(2)+D=0 \\
8+D \\
D=-8
\end{gathered}
$$

$$
\therefore 3 x+3 y+z-8=0 \text { is }
$$

the scalar equation of

$$
\begin{align*}
& \begin{array}{l}
\vec{r}=(2,1,-1)+t(1,0, \\
=(1,0,-3)
\end{array} \tag{2,1,-1}\\
& \begin{aligned}
\vec{b} & =\overrightarrow{P Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P}
\end{aligned} \\
& \vec{b}=(1,2,-1)-(2,1,-1) \\
& \vec{n}=\vec{a} \times \vec{b} \quad{ }_{0}^{0} x_{0}^{-3} x_{-1}^{1} x_{1}^{0} \\
& =(3,3,1)
\end{align*}
$$

Ex. 4. Find the acute angle between the planes
$\pi_{1}: x+2 y-3 z-4=0$ and $\pi_{2}: x-3 y+5 z+7=0$.
For $\pi_{1}, \vec{n}_{1}=(1,2,-3)$, For $\pi_{2}: \vec{n}_{2}=(1,-3,5)$

$$
\begin{aligned}
& \vec{n}_{1} \cdot \vec{n}_{2}=\left|\vec{n}_{1}\right|\left|\vec{n}_{2}\right| \cos \theta \\
&(1,2,-3) \cdot(1,-3,5)=\sqrt{14} \cdot \sqrt{35} \cdot \cos \theta \\
& 1-6-15=\sqrt{14} \cdot \sqrt{35} \cdot \cos \theta \\
& \frac{-20}{\sqrt{14} \cdot \sqrt{35}}=\cos \theta \\
& \theta=155^{\circ}
\end{aligned}
$$

\therefore the acute angle between the planes is approximate ly 25°.

Ex. 5. Use vector projections to find the exact distance from the point $Q(1,2,3)$ to the plane

$$
4 x-5 y+7 z-10=0
$$

$\vec{n}=(4,-5,7) \quad$ Find a point, P_{0} in the plane
$x=0, z=0$, find y

$$
\begin{aligned}
& -5 y=10 \\
& y=-2
\end{aligned}
$$

$$
P(0, y=-2,0)
$$

$$
\left.\begin{array}{rl}
d & =\mid \overrightarrow{Q P P_{n} \vec{n} \mid} \\
& =\frac{|\overrightarrow{Q P} \cdot \vec{n}|}{|\vec{n}|} \\
& =\frac{|(-1,-4,-3) \cdot(4,-5)|}{\sqrt{16+25+49}} \\
& =\frac{|-4+20-21|}{\sqrt{90}} \\
& =\frac{|-5|}{3 \sqrt{10}} \\
& =\frac{5}{3 \sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}
\end{array}\right]=\frac{8 \sqrt{10}}{3(10) 2}-7=\frac{\sqrt{10}}{6}
$$

$$
=(0,-2,0)-(1,2,3)
$$

$$
=(-1,-4,-3)
$$

$\therefore Q(1,2,3)$ is exactly $\frac{\sqrt{10}}{6}$ units from the plane.

Ex. 6. a) Show that the shortest distance from a point $Q\left(x_{1}, y_{1}, z_{1}\right)$ to a plane with a scalar equation $A x+B y+C z+D=0$ is given by the formula $d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
b) Use the formula to find the distance from the point $Q(1,2,3)$ to the plane $4 x-5 y+7 z-10=0$.
a) Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a specific point in the plane.

$$
\begin{aligned}
& \overrightarrow{Q P_{0}}=\overrightarrow{O P_{0}}-\overrightarrow{O Q} \\
& \overrightarrow{Q P_{0}}=\left(x_{0}, y_{0}, z_{0}\right)-\left(x_{1}, y_{1}, z_{1}\right) \quad Q(x \\
& \therefore \overrightarrow{Q P_{0}}=\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \text { and } \vec{n}=(A, B, C) \\
& d=\left|\frac{V P}{Q P_{0} o n \vec{n} \mid}\right| \\
&=\frac{\left|\overrightarrow{Q P_{0}} \cdot \vec{n}\right|}{|\vec{n}|}
\end{aligned}
$$

$$
=\frac{\left|\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \cdot(A, B, C)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Note: Since the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is in the plane

$$
A x+B y+C z+D=0, \text { it satisfies the equation. }
$$

$$
=\frac{\left|A x_{0}-A x_{1}+B y_{0}-B y_{1}+C z_{0}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

ie. $A x_{0}+B y_{0}+C z_{0}+D=0$, so $A x_{0}+B y_{0}+C z_{0}=-D$
b)
$Q(1,2,3) \quad \vec{n}=(4,-5,7)$
$A B C \quad D=-10$
$=\frac{\left|-A x_{1}-B y_{1}-C z_{1}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$
$=\frac{\left|-\left(A x_{1}+B y_{1}+C z_{1}+D\right)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$ x, y, z,
$d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$
$\therefore d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$

$$
|4(1)-5(2)+7(3)-10|
$$

$=\frac{\sqrt{(5)}+(-1)-(-5)^{2}+(G)^{2}}{\sqrt{(5)}}$

$$
=\frac{|5|}{\sqrt{90}}
$$

$$
=\frac{5}{3 \sqrt{10}} \cdot \frac{\sqrt{10}}{\sqrt{10}}
$$

$$
=\frac{\sqrt{10}}{6}
$$

$\therefore Q(1,2,3)$ is $\frac{\sqrt{10}}{6}$ units from the plano.

HW: pg. 285 \#1-13 \& Additional Questions

1. What is the exact distance from the point $Q(1,3,-2)$ to the plane $4 x-y-z+6=0$?
2. What is the exact distance between the planes $2 x-y-2 z+3=0$ and $4 x-2 y-4 z-9=0$?

Answers: 1. $\frac{3 \sqrt{2}}{2} \quad$ 2. $\frac{5}{2}$
\qquad
Warm-up:
Given $A(1,5,9), B(-2,6,8)$ and $C(12,7,16)$ are points in a plane, find:
a) the vector, parametric and scalar equations of the plane.
b) the exact distance the point $Q(1,-2,1)$ is from the plane.
a) vector equation:

$$
\vec{r}=\vec{r}_{1}+s \vec{a}+t \vec{b}, \infty, t \in \mathbb{R}
$$

$$
\begin{aligned}
\vec{r}_{1} & =\overrightarrow{O A} & \vec{a} & =\overrightarrow{A B} \\
& =(1,5,9) & & =\overrightarrow{O B}-
\end{aligned}
$$

$$
\therefore \vec{r}=(1,5,9)+d(-3,1,-1)+t(14,1,8), 2, t \in \mathbb{R}
$$

parametric equations:

$$
\begin{aligned}
& x=1-3 s+14 t \\
& y=5+A+t \\
& z=9-A+8 t
\end{aligned}
$$

Scalar equation:

$$
\begin{array}{lll}
A x+B y+C z+D=0 & \vec{n} & =\vec{a} \times \vec{b} \\
\vec{n}=(9,10,-17) & A(1,5,9) & =(9,10, \\
A, B C & x y z &
\end{array}
$$

Find D

$$
\begin{gathered}
9(1)+10(5)-17(9)+D=0 \\
9+50-152+D=0 \\
D-94=0 \\
D=94
\end{gathered}
$$

$$
9+50-153+D=0 \quad \therefore \text { the scalar equation }
$$

$$
\begin{aligned}
D-94 & =0 \quad \text { is } 9 x+10 y-17 z+94=0 \\
D & =94
\end{aligned}
$$

b) $\quad \begin{gathered}x, y, z ;\end{gathered} \quad \begin{aligned} & A \\ & (1,-2,+1) ;\end{aligned} \quad \begin{aligned} & 9 \\ & \end{aligned} \quad C+10 y-17 z+94=0$

$$
\begin{aligned}
d & =\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{|9(1)+10(-2)-17(+1)+94|}{\sqrt{(9)^{2}+(10)^{2}+(-17)^{2}}}
\end{aligned}\left\{\begin{array}{l}
d
\end{array}=\frac{66}{\sqrt{470}} \times \frac{\sqrt{470}}{\sqrt{470}}\right.
$$

There are three possible ways that a line and a plane in three dimensions can intersect.

The line is parallel and distinct from the plane.

There is no intersection.

The line intersects the plane.

The intersection is a point.

The line lies in the plane.

The intersection is the line.

Ex. 1. For each of the following, find the intersection of the line and the plane.
a) $L: \vec{r}=(1,-3,-2)+t(2,1,3), t \in \mathfrak{R}$ and $\pi: 2 x+4 y-z+3=0$

For L,
$x=1+2 t$
$y=-3+t$
$z=-2+3 t$
If $t=1$
$x=3$
$y=-2$
$z=1$

Sub parametric equation 2 of line

$$
\begin{aligned}
2(1+2 t)+4(-3+t)-(-2+3 t)+3 & =0 \\
2+4 t-12+4 t+2-3 t+3 & =0 \\
5 t-5 & =0 \\
5 t & =5 \\
t & =1
\end{aligned}
$$

\therefore the lime intersects the plane at the point $(3,-2,1)$.
b) $L: \frac{x-2}{5}=\frac{y+1}{3}=z$ and $\pi: 8 x-13 y-z-29=0$

$$
\frac{x-2}{5}=\frac{y-(-1)}{3}=\frac{z-0}{1}
$$

For L_{1}

$$
\begin{aligned}
& x=2+5 t \\
& y=-1+3 t \\
& z=t
\end{aligned}
$$

Sub parametric equations into π :

$$
\begin{gathered}
8(2+5 t)-13(-1+3 t)-t-29=0 \\
16+40 t+13-39 t-t-29=0 \\
0 t=0 \\
t \in \mathbb{R} \\
\therefore \text { The line lies in the }
\end{gathered}
$$ plane so the intersection's the

$$
\operatorname{line} \frac{x-2}{5}=\frac{y+1}{3}=z
$$

c) $L: \vec{r}=(2,1,5)+t(11,9,1), t \in \mathfrak{R}$ and $\pi: 2 x-3 y+5 z-8=0$

For L,
sub in π

$$
\begin{aligned}
& x=2+11 t \\
& y=1+9 t \\
& z=5+t
\end{aligned}
$$

$$
\begin{gathered}
2(2+11 t)-3(1+9 t)+5(5+t)-8=0 \\
4+22 t-3-27 t+25+5 t-8=0 \\
0 t+18=0 \\
0 t=-18
\end{gathered}
$$

no solution
\therefore no intersection since
the line is parallel and distinct from the plane.

Ex. 2. For each of the following planes, find the x, y and z-intercepts and sketch the plane.
a) $2 x+3 y+4 z-12=0$

$$
\begin{aligned}
& \text { For } x-\operatorname{int}, y=0, z=0 \\
& 2 x-12=0 \\
& x=6
\end{aligned}
$$

$\therefore x$-int is 6
For y-int, $x=0, z=0$
$3 y-12=0$ $y=4$
$\therefore \psi$-int is 4
For $z-\operatorname{in} t, x=0, y=0$
$4 z-12=0$ $z=3 \quad \therefore z$ int is 3

c) $y-6=0$

No x-int, y-int is 6
No z-int,

For $z \cdot \operatorname{int}, y=0$

$$
2 z-6=0
$$

$$
z=3
$$

$\therefore z-$ int is 3

