\qquad

Section 8.1 - The Vector Equation of a Line in Space

The vector equation of a plane can be determined by one point and two non-parallel vectors.

Let $P(x, y, z)$ be any point in the plane $\pi, P_{1}\left(x_{1}, y_{1} z_{1}\right)$ be a particular point in the plane and vectors \vec{a} and \vec{b} be two non-parallel direction vectors in the plane.

SUMMARY OF EQUATIONS OF PLANES IN 3-SPACE:

Vector Equation

$$
\vec{r}=\vec{r}_{1}+s \vec{a}+t \vec{b}
$$

or
$(x, y, z)=\left(x_{1}, y_{1}, z_{1}\right)+s\left(a_{1}, a_{2}, a_{3}\right)+t\left(b_{1}, b_{2}, b_{3}\right)$

Parametric Equations

$$
\begin{aligned}
& x=x_{1}+a_{1} s+b_{1} t \\
& y=y_{1}+a_{2} s+b_{2} t \\
& z=z_{1}+a_{3} s+b_{3} t
\end{aligned}
$$

where (x, y, z) is the position vector of any point in the plane
$\left(x_{1}, y_{1}, z_{1}\right)$ is the position vector of some particular point in the plane
\vec{a} and \vec{b} are two non-parallel direction vectors for the plane
and
$s, t \in \mathfrak{R} \quad$ are the parameters.

Ex. 1. Determine the vector and parametric equations of the plane through the points $F(-3,7,1), G(-1,2,-3)$ and $H(5,-1,-2)$.

Ex. 2. Determine the vector equation of the plane containing the point $P(-2,3,5)$ and the line $\vec{r}=(-1,4,3)+t(-1,-3,6), t \in \mathfrak{R}$.

Ex. 3. Find the vector equation of the plane that contains the two lines
$\vec{r}=(1,2,3)+s(2,4,-1), s \in \mathfrak{R}$ and $\vec{r}=(4,5,1)+t(-2,-4,1), t \in \mathfrak{R}$.

Ex. 4. Does the point $(1,5,3)$ lie in the plane $\vec{r}=(4,-3,1)+s(3,1,-2)+t(6,5,-1), s, t \in \mathfrak{R}$?

Date:

\qquad

A normal vector to a plane is a vector that is perpendicular to every vector in the plane.

Find the general equation of a plane containing the point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ with normal vector $\vec{n}=(A, B, C)$.

Let $P(x, y, z)$ be any point in the plane.

Parallel Planes

If $\pi_{1} \| \pi_{2}$ then $\vec{n}_{1} \| \vec{n}_{2}$ where $\vec{n}_{1}=k \vec{n}_{2}$.
If $\pi_{1} \perp \pi_{2}$ then $\vec{n}_{1} \perp \vec{n}_{2}$ where $\vec{n}_{1} \cdot \vec{n}_{2}=0$.

SUMMARY: The scalar or Cartesian equation of a plane in space has the form $A x+B y+C z+D=0$ where (A, B, C) is a vector normal to the plane.

Ex. 1. Find the scalar equation of the plane through the point $A(-2,1,3)$ having a normal vector $\vec{n}=(4,-2,5)$.

Ex. 2. Find the Cartesian equation of the plane that passes through the points $A(-2,3,1), B(-1,2,-1)$ and $C(1,-2,3)$.

Ex. 3. Find the scalar equation of the plane containing the point $Q(1,2,-1)$ and the line $\vec{r}=(2,1,-1)+t(1,0,-3), t \in \mathfrak{R}$.

Ex. 4. Find the acute angle between the planes

$$
\pi_{1}: x+2 y-3 z-4=0 \text { and } \pi_{2}: x-3 y+5 z+7=0 .
$$

Ex. 5. Use vector projections to find the exact distance from the point $Q(1,2,3)$ to the plane $4 x-5 y+7 z-10=0$.

Ex. 6. a) Show that the shortest distance from a point $Q\left(x_{1}, y_{1}, z_{1}\right)$ to a plane with a scalar equation
$A x+B y+C z+D=0$ is given by the formula $d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
b) Use the formula to find the distance from the point $Q(1,2,3)$ to the plane $4 x-5 y+7 z-10=0$.
a) Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a specific point in the plane.

$$
\begin{aligned}
& \overrightarrow{Q P_{0}}=\overrightarrow{O P_{0}}-\overrightarrow{O Q} \\
& \overrightarrow{Q P_{0}}=\left(x_{0}, y_{0}, z_{0}\right)-\left(x_{1}, y_{1}, z_{1}\right) \\
\therefore & \overrightarrow{Q P_{0}}=\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \text { and } \vec{n}=(A, B, C) \\
d & =\left|\frac{V P}{Q P_{0} o n \vec{n}}\right| \\
& =\frac{\left|\overrightarrow{Q P_{0}} \cdot \vec{n}\right|}{|\vec{n}|}
\end{aligned}
$$

$$
=\frac{\left|\left(x_{0}-x_{1}, y_{0}-y_{1}, z_{0}-z_{1}\right) \cdot(A, B, C)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Note: Since the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ is in the plane $A x+B y+C z+D=0$, it satisfies the equation.

$$
=\frac{\left|A x_{0}-A x_{1}+B y_{0}-B y_{1}+C z_{0}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

ie. $A x_{0}+B y_{0}+C z_{0}+D=0$, so $A x_{0}+B y_{0}+C z_{0}=-D$

* see Note above

$$
\begin{aligned}
& =\frac{\left|-A x_{1}-B y_{1}-C z_{1}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|-\left(A x_{1}+B y_{1}+C z_{1}+D\right)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& \therefore d=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

HW: p. 285 \#1-13 \& Additional Questions

1. What is the exact distance from the point $Q(1,3,-2)$ to the plane $4 x-y-z+6=0$?
2. What is the exact distance between the planes $2 x-y-2 z+3=0$ and $4 x-2 y-4 z-9=0$?
Answers: 1. $\frac{3 \sqrt{2}}{2}$
3. $\frac{5}{2}$

Warm-up:

Given $A(1,5,9), B(-2,6,8)$ and $C(12,7,16)$ are points in a plane, find:
a) the vector, parametric and scalar equations of the plane.
b) the exact distance the point $Q(1,-2,1)$ is from the plane.

There are three possible ways that a line and a plane in three dimensions can intersect.

The line is parallel and distinct from the plane.

There is no intersection.

The line intersects the plane.

The intersection is a point.

The line lies in the plane.

The intersection is the line.

Ex. 1. For each of the following, find the intersection of the line and the plane.
a) $L: \vec{r}=(1,-3,-2)+t(2,1,3), t \in \mathfrak{R}$ and $\pi: 2 x+4 y-z+3=0$
b) $L: \frac{x-2}{5}=\frac{y+1}{3}=z$ and $\pi: 8 x-13 y-z-29=0$
c) $L: \vec{r}=(2,1,5)+t(11,9,1), t \in \mathfrak{R}$ and $\pi: 2 x-3 y+5 z-8=0$

Ex. 2. For each of the following planes, find the x, y and z-intercepts and sketch the plane.
a) $2 x+3 y+4 z-12=0$
b) $3 y+2 z-6=0$
c) $y-6=0$

Date:

\qquad
There are three ways two planes can intersect.

Planes are parallel and

 distinct.Planes are parallel and coincident.

Planes intersect.

The intersection is a line.

$$
\text { ex. } \begin{array}{r}
\pi_{1}: 2 x+5 y+z-3=0 \\
\pi_{2}: 3 x-y+5 z+1=0
\end{array}
$$

Ex. 1. Find the intersection of each of the following:
a) $\pi_{1}: 5 x-2 y+3 z+1=0$ $\pi_{2}: 5 x-2 y+3 z-4=0$
b) $\pi_{1}: x+2 y+7 z-4=0$
$\pi_{2}: 2 x+4 y+14 z-8=0$
c) $\pi_{1}: x+y-3 z-4=0$ $\pi_{2}: x+2 y-z-1=0$

Solution 1: Solve algebraically.
Solution 2: Solve using an augmented 2×4 matrix.
d) $\pi_{1}: x+2 y+7 z-4=0$

$$
\pi_{2}: x+3 y-3 z-1=0
$$

e) $\pi_{1}: x-4 y+3 z-5=0$ $\pi_{2}: 2 x-y+6 z=0$
f) $\pi_{1}: x+4 y-z-3=0$

$$
\pi_{2}: 2 x+8 y+2 z-7=0
$$

Ex. 2. Find the scalar equation of the plane which passes through the point $A(2,0,-1)$ and is perpendicular to the line of intersection of $\pi_{1}: 2 x+y-z+5=0$ and $\pi_{2}: x+y+2 z+7=0$.

Ex. 3. Find the vector equation of the line that passes through the point $B(2,-1,7)$ and is parallel to the line of intersection of $\pi_{1}: x+2 y-3 z+5=0$ and $\pi_{2}: 3 x-y+2 z-4=0$.

MCV 4UI-Vectors Unit 10: Day 5
Date: \qquad

There are eight possible ways three planes can intersect.
When the normal of all three planes are parallel, the possibilities are

Case \#1

Case \#2

2 planes are coincident, the other parallel; no intersection

Case \#3

3 planes are coincident;: intersection: a plane

Examples of each case:

Find the intersection of the following pairs of lines, if any exist:
\#1. $\pi_{1}: x+2 y+4 z-2=0 \rightarrow \pi_{1}: x+2 y+4 z-2=0$
$\pi_{2}:-x-2 y-4 z+5=0 \rightarrow \pi_{2}: x+2 y+4 z-5=0$
$\pi_{3}: 2 x+4 y+8 z-12=0 \rightarrow \pi_{3}: x+2 y+4 z-6=0$
\#2. $\pi_{1}:-5 x+4 y+3 z-2=0 \quad \rightarrow \pi_{1}: 5 x-4 y-3 z+2=0$
$\pi_{2}: 10 x-8 y-6 z+4=0 \quad \rightarrow \pi_{2}: 5 x-4 y-3 z+2=0$
$\pi_{3}:-15 x+12 y+9 z-21=0 \rightarrow \pi_{3}: 5 x-4 y-3 z+7=0$
\#3. $\pi_{1}:-x+y+3 z-2=0 \rightarrow \pi_{1}: x-y-3 z+2=0$
$\pi_{2}: 2 x-2 y+6 z+4=0 \rightarrow \pi_{2}: x-y-3 z+2=0$
$\pi_{3}:-3 x+3 y+9 z-6=0 \rightarrow \pi_{3}: x-y-3 z+2=0$

When only two of the normals of the planes are parallel, the possibilities are

two planes are
parallel and distinct, the other crossing; no common intersection

Case \#5

two planes are coincident; the other crossing;
intersection: a line
\#4. $\pi_{1}: 3 x+5 y-2 z+1=0$
$\pi_{2}:-6 x-10 y+4 z-4=0$
$\pi_{3}: x+2 y-3 z-6=0$
\#5. $\pi_{1}: 4 x+y+7 z-2=0$
$\pi_{2}: 8 x+2 y+14 z-4=0$
$\pi_{3}: x-3 y+5 z-6=0$

When none of the normals are parallel, the possibilities are

normals coplanar;
no intersection since the planes form a triangular prism

normals are not parallel and non-coplanar; intersection: a point like the corner of a room
normals coplanar; intersection: a line like the pages of a book

Note: If all normals are coplanar,
then, $\left(\vec{n}_{1} \times \vec{n}_{2}\right) \cdot \vec{n}_{3}=0$.
\#6. $\pi_{1}: x+2 y-z-1=0$
$\pi_{2}: x-5 y+4 z+4=0$
$\pi_{3}: 3 x-y+2 z-2=0$
\#7. $\pi_{1}: x+2 y+z-2=0$
$\pi_{2}: x+3 y-z-4=0$
$\pi_{3}: 3 x+7 y+z-8=0$
\#8. $\pi_{1}: x+y+z-4=0$
$\pi_{2}: x+2 y+2 z-2=0$
$\pi_{3}: x-y+z+2=0$

normals coplanar; no intersection

normals coplanar;
intersection: a line
normals are not parallel
and non-coplanar;
intersection: a point

Ex. Determine the intersection, if any, of each of the following sets of planes. In each case, give a geometrical interpretation of the system of equations and the solution. Also state whether the system has no solutions, a unique solution, or an infinite number of solutions.
a) $2 x+4 y+z=2$
$5 x+5 y+3 z=17$
$4 x-y+3 z=26$
b) $2 x+7 y+2 z=3$
$6 x+y-4 z=-1$
$2 x+9 y+3 z=4$

