1. Find the derivative of $y=b^{f(x)}$.

$$
\text { the natural } y=b^{f(x)}
$$

take the natural logarithm of both sides

$$
\begin{aligned}
& \ln y=\ln b{ }^{f(x)} \\
& \ln y=f(x) \cdot \sqrt{\ln b}<^{\text {constant }} \text { multiple }
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{y} \cdot \frac{d y}{d x}=f^{\prime}(x) \cdot \ln b \\
\frac{d y}{d x}=y \cdot \ln b \cdot f^{\prime}(x) \\
\because y=b^{f(x)} \\
\therefore \frac{d y}{d x^{\prime}}=b^{f(x)} \cdot \ln b \cdot f^{\prime}(x)
\end{gathered}
$$

If $y=b^{x}$ then $\frac{d y}{d x}=b^{x} \cdot \ln b \cdot 1$
If $y=b^{f(x)}$ then $\frac{d y}{d x}=b^{f(x)} \cdot \ln b \cdot f^{\prime}(x)$

$$
\text { diff. w.r.t. } x
$$

2. Find the derivative of $y=\log _{b} f(x)$.

$$
y=\log _{b} f(x)
$$

using the change of base identity
constant
multiple

$$
\begin{aligned}
y & =\frac{1}{\ln b} \cdot \ln f(x) \\
\frac{d y}{d x} & =\frac{1}{\ln b} \cdot \frac{1}{f(x)} \cdot f^{\prime}(x) \\
\frac{d y}{d x} & =\frac{1}{f(x) \cdot \ln b} \cdot f^{\prime}(x)
\end{aligned}
$$

Ex. 1. Find the derivative of each of the following.
a) $y=e^{x}+x^{e}-\ln x$

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x} \cdot 1+e x^{e-1} \cdot 1-\frac{1}{x} \cdot 1 \\
& \frac{d y}{d x}=e^{x}+e x^{e-1}-\frac{1}{x}
\end{aligned}
$$

b) $y=3^{x}+x^{3}-\log _{3} x$

$$
\begin{aligned}
& \frac{d y}{d x}=3^{x} \ln 3 \cdot 1+3 x^{2} \cdot 1-\frac{1}{x \ln 3} \\
& \frac{d y}{d x}=3^{x} \ln 3+3 x^{2}-\frac{1}{x \ln 3}
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
s & =10^{\sqrt{t^{2}-1}} \\
s & =10^{\left(t^{2}-1\right)^{\frac{1}{2}}} \\
\frac{d s}{d t} & =10^{\sqrt{t^{2}-1}} \cdot \ln 10 \cdot \frac{1}{2}\left(t^{2}-1\right)^{-\frac{1}{2}}(2 t) \\
\frac{d s}{d t} & =\frac{10^{\sqrt{t^{2}-1}} \cdot \ln 10 \cdot t}{\sqrt{t^{2}-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
f(x)=\log _{4} \sqrt{3 x^{2}-5} \\
f(x)=\log _{4}\left(3 x^{2}-5\right)^{\frac{1}{2}} \\
f(x)=\frac{1}{2} \cdot \log _{4}\left(3 x^{2}-5\right) \\
f^{\prime}(x)=\frac{1}{2} \cdot \frac{1}{\left(3 x^{2}-5\right) \cdot \ln 4} \cdot\left(6^{3} x\right) \\
f^{\prime}(x)=\frac{3 x}{\left(3 x^{2}-5\right) \cdot \ln 4}
\end{array} \text { (x)}
\end{aligned}
$$

$$
\text { e) } \begin{aligned}
y & =\log \left(\frac{1-x}{1+x}\right) \nless \\
y & =\log _{10}(1-x)-\log _{10}(1+x) \\
\frac{d y}{d x} & =\frac{1}{(1-x) \cdot \ln 10} \cdot(-1)-\frac{1}{(1+x) \cdot \ln 10} \cdot(1) \\
& =\frac{-1}{(1-x) \cdot \ln 10}-\frac{1}{(1+x) \cdot \ln 10} \\
& =\frac{-1(1+x)-1(1-x)}{(1-x)(1+x) \cdot \ln 10} \\
& =\frac{-1-x-1+x}{(1-x)(1+x) \cdot \ln 10} \\
\therefore \frac{d y}{d x} & =\frac{-2}{\left(1-x^{2}\right) \cdot \ln 10}
\end{aligned}
$$

Ex. 2. Find the equation of the tangent to $g(x)=x^{3} \cdot \underbrace{\log _{2} x^{3}}$ at $x=1$.

$$
\text { \& } \begin{aligned}
g(x) & =x^{3} \cdot 3 \log _{2} x \\
g(x) & =3 x^{3} \cdot \log _{2} x \\
m_{t} & =g^{\prime}(x) \\
& =9 x^{2} \cdot \log _{2} x+\frac{1}{x \ln 2} \cdot 3 x^{3} \\
\therefore m_{t} & =9 x^{2} \cdot \log _{2} x+\frac{3 x^{2}}{\ln 2} \\
\text { at } x & =1 \\
m_{t} & =9 \cdot(0)+\frac{3}{\ln 2} ; g(1)=1 \cdot \log _{2} 1
\end{aligned}
$$

$$
m_{t}=\frac{3}{\ln 2} ;(1,0) ; b=
$$

$$
0=\frac{3}{\ln 2}(1)+b
$$

$$
-\frac{3}{\ln 2}=b
$$

\therefore the equation of the tangent is $y=\frac{3}{\ln 2} x-\frac{3}{\ln 2}$

HW: p. 316 \# 1 to 4, Fa, 6, 7ab

Warm-up: Find the slope of the tangent to $y_{y}=\frac{\left(x^{4}+1\right) \sqrt{x+2}}{\sqrt[3]{2 x^{2}+2 x+1}}$ at $x=-1$.

$$
\begin{aligned}
& \text { Warm-up: Find the slope of the tangent to } \begin{aligned}
& y=\left(x^{4}+1\right) \cdot(x+2)^{\frac{1}{2}} \cdot\left(2 x^{2}+2 x+1\right)^{-\frac{1}{3}} \sqrt{2 x^{2}+2 x+1} \text { at } x=-1 . \\
& \frac{d y}{d x}=4 x^{3} \cdot(x+2)^{\frac{1}{2}} \cdot(\underbrace{-\frac{1}{2}}+2 x+1)^{-\frac{1}{3}}+\frac{1}{2} \cdot(x+2)^{-\frac{1}{2}} \cdot\left(x^{4}+1\right)\left(2 x^{2}+2 x+1\right)^{-\frac{1}{3}}-\frac{1}{3}\left(2 x^{2}+2 x+1\right)^{\frac{1}{3}}(4 x+2) \cdot\left(x^{4}+1\right)(x+2)^{2} \\
& \quad a t x=-1 \\
& \frac{d y}{d y}=(-4)(1)(1)+\frac{1}{2}(1)(2)(1)-\frac{1}{3}(1)(-2)(2)(1) \\
&=-3+\frac{4}{3} \quad \therefore m_{t}=-\frac{5}{3} \text { at } x=-1 . \\
&=-\frac{5}{3} \quad
\end{aligned} .
\end{aligned}
$$

Recall: If $y=x^{n}$ then $\frac{d y}{d x}=\eta x^{n-1} \quad$ If $y=[f(x)]^{n}$ then $\frac{d y}{d x}=n[f(x)]^{n-1} \cdot f^{\prime}(x)$
If $y=e^{x} \quad$ then $\frac{d y}{d x}=e^{x} \quad$ If $y=e^{f(x)} \quad$ then $\frac{d y}{d x}=e^{f(x)} \cdot f^{\prime}(x)$
If $y=b^{x} \quad$ then $\frac{d y}{d x}=b^{x} \ln b \quad$ If $y=b^{f(x)} \quad$ then $\frac{d y}{d x}=b^{f(x)} \cdot \ln b \cdot f^{\prime}(x)$
If $y=\ln x \quad$ then $\frac{d y}{d x}=\frac{1}{\chi} \quad$ If $y=\ln f(x) \quad$ then $\frac{d y}{d x}=\frac{1}{f(x)} \cdot f^{\prime}(x)$
If $y=\log _{b} x$ then $\frac{d y}{d x}=\frac{1}{x \ln b} \quad$ If $y=\log _{b} f(x)$ then $\frac{d y}{d x}=\frac{1}{f(x) \cdot \ln b} \cdot f^{\prime}(x)$
Ex. 1. Differentiate each of the following.
a) $y=\pi x+x^{\pi}-\pi^{x}$
b) $f(x)=2 x^{2 \sqrt{3}}-\log _{2} x$
$\frac{d y}{d x}=\pi+\pi x^{\pi-1}-\pi^{x} \ln \pi$ $f^{\prime}(x)=4 \sqrt{3} x^{2 \sqrt{3}-1}-\frac{1}{x \ln 2}$

Note: If $y=x^{f(x)}$ or if $y=[f(x)]^{g(x)}$, the derivative is found by first taking the natural logarithm of both sides and then differentiating with respect to x.
This is the technique of logarithmic differentiation.
Ex. 2. Use the technique of logarithmic differentiation to find the derivative for each of the following:

$$
\begin{array}{rlr}
\text { a) } f(x)=x^{x} & \text { b) } y=(\cos x)^{\sin x} \\
\ln f(x)=\ln x^{x} & \ln y=\ln (\cos x)^{\sin x} \\
\ln f(x)=x \cdot \ln x & \ln y=\sin x \cdot \ln (\cos x) \\
\text { diff. w.r.t.x } & \frac{1}{y} \cdot \frac{d y}{d x}=\operatorname{diff\cdot \omega \cdot r\cdot t\cdot x} \cos x \cdot \ln (\cos x)+\frac{1}{\cos x} \cdot(-\sin x) \cdot \sin x \\
f^{\prime}(x)=1 \cdot \ln x+\frac{1}{x_{1}} \cdot x & \frac{d y}{}=y(\cos x \ln (\cos x)-\tan x \cdot \sin x) \\
\left.f^{\prime}(x)=f(x) \cdot \ln x+1\right] & \frac{d y}{d x}=(\cos x)^{\sin x}[\cos x \cdot \ln \cos x-\tan x \cdot \sin x]
\end{array}
$$

Ex. 3. If $y=\left(x^{2}-1\right)^{\sqrt{x}}$ find $\frac{d y}{d x}$.

$$
\begin{aligned}
& \ln y=\ln \left(x^{2}-1\right)^{\sqrt{x}} d x \\
& \ln y=x^{\frac{1}{2}} \cdot \ln \left(x^{2}-1\right) \\
& \text { diff.w.r.t.x } \\
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \cdot \ln \left(x^{2}-1\right)+\frac{1}{x^{2}-1} \cdot 2 x^{1} \cdot x^{\frac{1}{2}} \\
& \frac{1}{y} \frac{d y}{d x}= \frac{1}{2} x^{-\frac{1}{2}} \cdot \ln \left(x^{2}-1\right)+\frac{4}{2} x^{\frac{3}{2}} \cdot \frac{1}{x^{2}-1} \\
& \frac{d y}{d x}= \frac{1}{2} x^{-\frac{1}{2}}\left[\ln \left(x^{2}-1\right)+\frac{4 x^{2}}{x^{2}-1}\right] \cdot\left(x^{2}-1\right)^{\prime \prime} \\
& \frac{d y}{d x}=\frac{\left(x^{2}-1\right)^{\sqrt{x}}}{2 \sqrt{x}}\left[\ln \left(x^{2}-1\right)+\frac{4 x^{2}}{x^{2}-1}\right]
\end{aligned}
$$

Ex. 4. Find the equation of the normal to $y=\frac{\left(x^{4}+1\right) \sqrt{x+2}}{\sqrt[3]{2 x^{2}+2 x+1}}$ at $x=-1$, using logarithmic differentiation.

$$
\begin{aligned}
& \text { using logarithmic differentiation. } \\
& \qquad \begin{array}{l}
\ln y=\ln \left[\frac{\left(x^{4}+1\right)(x+2)^{\frac{1}{2}}}{\left(2 x^{2}+2 x+1\right)^{1 / 3}}\right] \\
\ln y=\ln \left(x^{4}+1\right)+\ln (x+2)^{\frac{1}{2}}-\ln \left(2 x^{2}+2 x+1\right)^{\frac{1}{3}} \\
\ln y=\ln \left(x^{4}+1\right)+\frac{1}{2} \ln (x+2)-\frac{1}{3} \ln \left(2 x^{2}+2 x+1\right) \\
\quad \text { diff.w.r.t. } x \\
\frac{1}{y} \frac{d y}{d x}=\frac{4 x^{3}}{x^{4}+1}+\frac{1}{2} \cdot \frac{1}{x+2}-\frac{1}{3} \cdot \frac{4 x+2}{2 x^{2}+2 x+1}
\end{array}
\end{aligned}
$$

Find $\frac{d y}{d x}$ if $x=-1$: $y=2$

$$
\begin{aligned}
\frac{1}{2} \frac{d y}{d x} & =-2+\frac{1}{2}-\frac{1}{3} \cdot(-2) \\
\frac{d y}{d x} & =2\left[-2+\frac{1}{2}+\frac{2}{3}\right] \\
\frac{d y}{d x} & =-4+1+\frac{4}{3} \\
\frac{d y}{d x} & =-\frac{5}{3}
\end{aligned}
$$

For normal,

$$
m_{n}=+\frac{3}{5} ;(-1,2) ; b=
$$

Find b

$$
\begin{gathered}
2=\frac{3}{5}(-1)+b \\
\frac{10}{5}+\frac{3}{5}=b \\
\frac{13}{5}=b
\end{gathered}
$$

HW: p. 326 \# 1, Bb, 2, Sac, 4, 6

- the equation of the normal at $x=-1$ ls $\quad y=\frac{3}{5} x+\frac{13}{5}$ or $3 x-5 y+13=0$.

Ex. 1. The position of a particle that moves on a straight line is given by $s(t)=t^{\frac{1}{t}}$ for $t>0$.
a) Find the velocity.
b) At what time, t, is the velocity zero?
a) $s(t)=t^{\frac{1}{t}}$
use logarithmic differentiation

$$
\begin{aligned}
& \ln s(t)=\ln t^{\frac{1}{t}} \\
& \ln s(t)=t^{-1} \ln t
\end{aligned}
$$

diff. wot t

$$
\begin{gathered}
\text { diff. wry } t \quad t \\
\frac{1}{s(t)} \cdot s^{\prime}(t)=-t^{-2} \ln t+\frac{1}{t} \cdot t^{-1} \\
\frac{1}{s(t)} \cdot s^{\prime}(t)=-t^{-2} \ln t+t^{-2} \\
s^{\prime}(t)=t^{\frac{1}{t}}\left[-t^{-2}(\ln t-1)\right] \\
s^{\prime}(t)=-t^{-2+\frac{1}{t}}(\ln t-1) \\
\therefore v(t)=-t^{-2+\frac{1}{t}}(\ln t-1)
\end{gathered}
$$

b) Find t if $v(t)=0$

$$
\because-t^{-2+\frac{1}{t}} \neq 0
$$

$\therefore \ln t-1=0$

$$
\begin{aligned}
\ln t & =1 \\
t & =e^{\prime}
\end{aligned}
$$

$$
\therefore t=e
$$

\therefore the velocity is 0
at $t=e$.

Ex. 2. A playground slide has the shape of the curve $y=4 e^{-\frac{x}{2}}$. If the horizontal component of the velocity for a person on the slide is $\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s}$ when $x=1$, find the vertical component of the velocity $\frac{d y}{d t}$ at that instant. $y=4 e^{-\frac{x}{2}}$

$$
\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s} ; \text { Find } \frac{d y}{d t} \text { when } x=1
$$

$$
\begin{aligned}
& y=4 e^{-\frac{x}{2}} \\
& \text { diff wot } t: \\
& \frac{d y}{d t}=4 e^{-\frac{x}{2}}\left(-\frac{1}{2} \frac{d x}{d t}\right)
\end{aligned}
$$

at $x=1 ; \quad \frac{d x}{d t}=2$

$$
\frac{d y}{d t}=4 e^{-\frac{1}{2}}\left(-\frac{1}{2} \cdot 2\right)
$$

$$
\frac{d y}{d t}=-\frac{4}{\sqrt{e}}
$$

\therefore the vertical component of the velocity is exactly
$-4 \mathrm{~m} / \mathrm{s}$ or -2.43 $\frac{-4}{\sqrt{e}} \mathrm{~m} / \mathrm{s}$ or $-2.43 \mathrm{~m} / \mathrm{s}$

Ex. 3. Find the maximum and minimum values of $f(x)=\ln \left(e^{x}+4 e^{-x}\right)$ for $-\ln 2 \leq x \leq \ln 4$.

$$
\begin{aligned}
f(x) & =\ln \left(e^{x}+4 e^{-x}\right) \\
f^{\prime}(x) & =\frac{1}{e^{x}+4 e^{-x}} \cdot\left[e^{x}+4 e^{-x}(-1)\right] \\
f^{\prime}(x) & =\frac{e^{x}-4 e^{-x}}{e^{x}+4 e^{-x}}
\end{aligned}
$$

for maximin, $f^{\prime}(x)=0$

$$
\begin{aligned}
\frac{0}{1} & =\frac{e^{x}-4 e^{-x}}{e^{x}+4 e^{-x}} \\
0 & =e^{x}-4 e^{-x} \\
0 & =e^{-x}\left(e^{2 x}-4\right) \\
e^{-x} \neq 0, & e^{2 x}=4 \\
2 x & =\ln 4 \\
x & =\frac{1}{2} \ln 4 \\
x & =\ln 4^{\frac{1}{2}} \\
x & -\ln 2
\end{aligned}
$$

$$
\begin{aligned}
f(-\ln 2) & =\ln \left(e^{-\ln 2}+4 e^{\ln 2}\right) \\
& =\ln \left(e^{\ln 2^{-1}}+4(2)\right) \\
& =\ln \left(\frac{1}{2}+8\right) \\
& =\ln \left(\frac{17}{2}\right)
\end{aligned}
$$

$$
\begin{array}{r|r}
x & f(x) \\
\hline \ln 2 & \ln \frac{17}{2}=2.14 \\
\ln 2 & \ln 4=1.39 \\
\ln 4 & \ln 5=1.61
\end{array}
$$

$$
f(\ln 2)=\ln \left(e^{\ln 2}+4 e^{-\ln 2}\right)
$$

$$
=\ln \left(2+4\left(\frac{1}{2}\right)\right)
$$

$$
=\ln 4
$$

$$
f(\ln 4)=\ln \left(e^{\ln 4}+4 e^{-\ln 4}\right)
$$

\therefore The maximum

$$
=\ln \left(4+4\left(\frac{1}{4}\right)\right)
$$ value of $f(x)$ is $\ln \left(\frac{17}{2}\right)$ and the minimum value is $\ln 4$.

Ex. 4. The effectiveness of studying for a test depends on how many hours a student studies. Some experiments showed that if the effectiveness, E, is put on a scale of 0 to 10 , then $E(t)=0.5\left[10+t e^{-\frac{t}{20}}\right]$, where t is the number of hours spent studying for an examination.
If a student has up to 30 h that he can spend studying, how many hours should he study for maximum effectiveness? $\quad 0 \leq t \leq 30$

$$
\begin{aligned}
& E(t)=0.5\left[10+t e^{-\frac{t}{20}}\right] \\
& E^{\prime}(t)=0.5\left[e^{-\frac{t}{20}}+e^{-\frac{t}{20}} \cdot\left(\frac{1}{20}\right) t\right]
\end{aligned}
$$

$$
\begin{aligned}
0 & =e^{\frac{-t}{20}}-\frac{1}{20} t e^{-\frac{t}{20}} \\
x 20) & =20 e^{-\frac{t}{20}}-t e^{-\frac{t}{20}} \\
0 & =e^{-\frac{t}{20}}(20-t) \\
e^{-\frac{t}{20}} \neq 0, \quad 20-t & =0 \\
\therefore t & =20
\end{aligned}
$$

For max, $E^{\prime}(t)=0$

t	$E(t)$
0	5
20	8.68
30	8.35

\therefore The student should study for 20 hours to maximize his effectiveness.

