Problem: Find the derivative of the exponential function $f(x)=e^{x}$ from first principles.

Summary:

$$
\text { If } y=e^{x} \quad \text { then } \frac{d y}{d x}=
$$

$$
\text { If } y=e^{f(x)} \text { then } \frac{d y}{d x}=
$$

Ex. 1. Find the derivatives of the following.
a) $y=e^{x^{2}-x}$
b) $y=\sqrt{e^{\frac{4}{x}}}$
c) $f(x)=\tan 2 x \cdot e^{2 x}$
d) $s(t)=\frac{e^{3 t}}{1-e^{3 t}}$

Ex. 2. Given $f(x)=e^{\sqrt{1-x}}$, determine $f^{\prime}(-3)$.

Ex. 3. Find the slope of the normal to the curve $y-e^{x y}=0$ at the point $(0,1)$.

Ex. 4. Determine the equations of the tangent and normal to $y=\frac{e^{x}}{x^{2}}, x \neq 0$, at $x=2$.
\qquad
Find the derivative of $y=\ln x$.

Summary:
If $y=\ln x \quad$ then $\frac{d y}{d x}=$
If $y=\ln u \quad$ then $\frac{d y}{d x}=$

If $y=\ln f(x)$ then $\frac{d y}{d x}=$

Properties of Natural Logarithms:
i) $\ln 1=$
ii) $\ln e=$
iii) $\ln e^{x}=$
iv) $e^{\ln x}=$

Natural Logarithm Laws: $x, y>0$

1. $\ln (x \cdot y)=$ multiplication
2. $\ln \left(\frac{x}{y}\right)=$
division
3. $\ln x^{n}=$
power

Ex. 1. Differentiate each of the following. (In some cases making use of the logarithm laws and exponent laws will make the process of differentiation easier.)
a) $f(x)=\ln (\cos x)$
b) $y=e^{2 \ln x}$
c) $y=\ln x^{5}$
d) $y=e^{\sqrt{x}} \cdot \ln \sqrt{x}$
e) $h(x)=\frac{\ln x}{x^{3}}$
f) $s(t)=\ln \sqrt{\frac{1-t}{1+t}}$

Ex. 2. Find an equation for the normal line to the curve $y \cdot \ln x=e^{x}-y$ at the point $(1, e)$.

Ex. 3. If $f(x)=x(\ln x)^{2}$, determine:
a) $f^{\prime}(x)$
b) the equation of the tangent at $x=\frac{1}{e}$
c) all points at which the graph of $f(x)$ has a horizontal tangent line.

Date: \qquad Section 8.3 - Derivatives of the General Exponential
and Logarithmic Functions

1. Find the derivative of $y=b^{f(x)}$.
2. Find the derivative of $y=\log _{b} f(x)$.

If $y=\log _{b} x \quad$ then $\frac{d y}{d x}=$

If $y=\log _{b} f(x)$ then $\frac{d y}{d x}=$

Ex. 1. Find the derivative of each of the following.
a) $y=e^{x}+x^{e}-\ln x$
b) $y=3^{x}+x^{3}-\log _{3} x$
c) $s=10^{\sqrt{t^{2}-1}}$
d) $f(x)=\log _{4} \sqrt{3 x^{2}-5}$
e) $y=\log \left(\frac{1-x}{1+x}\right)$

Ex. 2. Find the equation of the tangent to $g(x)=x^{3} \cdot \log _{2} x^{3}$ at $x=1$.

Warm-up: Find the slope of the tangent to $y=\frac{\left(x^{4}+1\right) \sqrt{x+2}}{\sqrt[3]{2 x^{2}+2 x+1}}$ at $x=-1$.

Recall: If $y=x^{n}$ then $\frac{d y}{d x}=$ If $y=[f(x)]^{n} \quad$ then $\frac{d y}{d x}=$
If $y=e^{x} \quad$ then $\frac{d y}{d x}=$
If $y=e^{f(x)} \quad$ then $\frac{d y}{d x}=$
If $y=b^{x} \quad$ then $\frac{d y}{d x}=$
If $y=b^{f(x)} \quad$ then $\frac{d y}{d x}=$
If $y=\ln x \quad$ then $\frac{d y}{d x}=$
If $y=\ln f(x) \quad$ then $\frac{d y}{d x}=$
If $y=\log _{b} x$ then $\frac{d y}{d x}=$
If $y=\log _{b} f(x)$ then $\frac{d y}{d x}=$
Ex. 1. Differentiate each of the following.
a) $y=\pi x+x^{\pi}-\pi^{x}$
b) $f(x)=2 x^{2 \sqrt{3}}-\log _{2} x$

Note: If $y=x^{f(x)}$ or if $y=[f(x)]^{g(x)}$, the derivative is found by first taking the natural logarithm of both sides and then differentiating with respect to x. This is the technique of logarithmic differentiation.

Ex. 2. Use the technique of logarithmic differentiation to find the derivative for each of the following:
a) $f(x)=x^{x}$
b) $y=(\cos x)^{\sin x}$

Ex. 3. If $y=\left(x^{2}-1\right)^{\sqrt{x}}$ find $\frac{d y}{d x}$.

Ex. 4. Find the equation of the normal to $y=\frac{\left(x^{4}+1\right) \sqrt{x+2}}{\sqrt[3]{2 x^{2}+2 x+1}}$ at $x=-1$, using logarithmic differentiation.

Ex. 1. The position of a particle that moves on a straight line is given by $s(t)=t^{\frac{1}{t}}$ for $t>0$.
a) Find the velocity.
b) At what time, t, is the velocity zero?

Ex. 2. A playground slide has the shape of the curve $y=4 e^{-\frac{x}{2}}$. If the horizontal component of the velocity for a person on the slide is $\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{s}$ when $x=1$, find the vertical component of the velocity $\frac{d y}{d t}$ at that instant.

Ex. 3. Find the maximum and minimum values of $f(x)=\ln \left(e^{x}+4 e^{-x}\right)$ for $-\ln 2 \leq x \leq \ln 4$.

x	$f(x)$

Ex. 4. The effectiveness of studying for a test depends on how many hours a student studies. Some experiments showed that if the effectiveness, E, is put on a scale of 0 to 10 , then $E(t)=0.5\left[10+t e^{-\frac{t}{20}}\right]$, where t is the number of hours spent studying for an examination.
If a student has up to 30 h that he can spend studying, how many hours should he study for maximum effectiveness?

