Date:______ UNIT 5: DERIVATIVES OF EXPONENTIAL & LOGARITHMIC FUNCTIONS Section 8.1 – Derivatives of Exponential Functions

c)
$$f(x) = \tan 2x \cdot e^{2x}$$

d) $s(t) = \frac{e^{3t}}{1 - e^{3t}}$

Ex. 2. Given $f(x) = e^{\sqrt{1-x}}$, determine f'(-3).

Ex. 3. Find the slope of the normal to the curve $y - e^{xy} = 0$ at the point (0,1).

Ex. 4. Determine the equations of the tangent and normal to $y = \frac{e^x}{x^2}$, $x \neq 0$, at x = 2.

Date:_____ Section 8.2 – The Derivative of the Natural Logarithmic Function

Find the derivative of $y = \ln x$.

Ex. 1. Differentiate each of the following. (In some cases making use of the logarithm laws and exponent laws will make the process of differentiation easier.)

a)
$$f(x) = \ln(\cos x)$$
 b) $y = e^{2 \ln x}$

c)
$$y = \ln x^5$$
 d) $y = e^{\sqrt{x}} \cdot \ln \sqrt{x}$

e)
$$h(x) = \frac{\ln x}{x^3}$$
 f) $s(t) = \ln \sqrt{\frac{1-t}{1+t}}$

Ex. 2. Find an equation for the normal line to the curve $y \cdot \ln x = e^x - y$ at the point (1, e).

Ex. 3. If $f(x) = x(\ln x)^2$, determine:

- **a**) f'(x)
- **b**) the equation of the tangent at $x = \frac{1}{e}$
- c) all points at which the graph of f(x) has a horizontal tangent line.

MCV 4UI-Calculus Unit 5: Day 3
Date:_____

Section 8.3 – Derivatives of the General Exponential and Logarithmic Functions

1. Find the derivative of $y = b^{f(x)}$.

2. Find the derivative of $y = \log_b f(x)$.

► x

Ex. 1. Find the derivative of each of the following.

a)
$$y = e^x + x^e - \ln x$$

b) $y = 3^x + x^3 - \log_3 x$

c)
$$s = 10^{\sqrt{t^2 - 1}}$$
 d) $f(x) = \log_4 \sqrt{3x^2 - 5}$

$$\mathbf{e}) \quad y = \log\left(\frac{1-x}{1+x}\right)$$

Ex. 2. Find the equation of the tangent to $g(x) = x^3 \cdot \log_2 x^3$ at x = 1.

MCV 4UI-Calculus Unit 5: Day 4

Date:

Section 8.5 – Logarithmic Differentiation

Warm-up: Find the slope of the tangent to $y = \frac{(x^4 + 1)\sqrt{x+2}}{\sqrt[3]{2x^2 + 2x + 1}}$ at x = -1.

Recall: If
$$y = x^n$$
 then $\frac{dy}{dx} =$
If $y = e^x$ then $\frac{dy}{dx} =$
If $y = e^x$ then $\frac{dy}{dx} =$
If $y = b^x$ then $\frac{dy}{dx} =$
If $y = \ln x$ then $\frac{dy}{dx} =$
If $y = \ln f(x)$ then $\frac{dy}{dx} =$
If $y = \ln f(x)$ then $\frac{dy}{dx} =$
If $y = \log_b x$ then $\frac{dy}{dx} =$
If $y = \log_b f(x)$ then $\frac{dy}{dx} =$

Ex. 1. Differentiate each of the following.

a)
$$y = \pi x + x^{\pi} - \pi^{x}$$

b) $f(x) = 2x^{2\sqrt{3}} - \log_2 x$

- **Note:** If $y = x^{f(x)}$ or if $y = [f(x)]^{g(x)}$, the derivative is found by first taking the natural logarithm of both sides and then differentiating with respect to *x*. This is the technique of *logarithmic differentiation*.
- **Ex. 2.** Use the technique of *logarithmic differentiation* to find the derivative for each of the following: a) $f(x) = x^x$ b) $y = (\cos x)^{\sin x}$

Ex. 3. If
$$y = (x^2 - 1)^{\sqrt{x}}$$
 find $\frac{dy}{dx}$.

Ex. 4. Find the equation of the normal to $y = \frac{(x^4 + 1)\sqrt{x+2}}{\sqrt[3]{2x^2 + 2x + 1}}$ at x = -1, using *logarithmic differentiation*.

Applications of Exponential and Logarithmic Functions

- **Ex. 1.** The position of a particle that moves on a straight line is given by $s(t) = t^{\frac{1}{t}}$ for t > 0.
 - **a**) Find the velocity.
 - **b**) At what time, *t*, is the velocity zero?

▶ x

Ex. 2. A playground slide has the shape of the curve $y = 4e^{-\frac{x}{2}}$. If the horizontal component of the velocity for a person on the slide is $\frac{dx}{dt} = 2 m/s$ when x = 1, find the vertical component of the velocity $\frac{dy}{dt}$ at that instant.

Ex. 3. Find the maximum and minimum values of $f(x) = \ln(e^x + 4e^{-x})$ for $-\ln 2 \le x \le \ln 4$.

Ex. 4. The effectiveness of studying for a test depends on how many hours a student studies. Some experiments showed that if the effectiveness, *E*, is put on a scale of 0 to 10, then $E(t) = 0.5 \left[10 + te^{-\frac{t}{20}} \right]$, where *t* is the number of hours spent studying for an examination.

If a student has up to 30 h that he can spend studying, how many hours should he study for maximum effectiveness?

