Section 9.1 - Increasing and Decreasing Functions

Section 9.2 - Critical Points, Relative Maxima and Minima

CRITICAL POINTS: are points where the derivative is 0 or undefined.
Note: All relative maxima and minima (local extrema) are critical points, but not all critical points are maxima or minima.

For local max/min $f^{\prime}(x)=0$ or $y^{\prime}=0$.
$f(x)$ is said to be increasing if as x increases, $f(x)$ increases.
For an increasing function, $f^{\prime}(x)>0$ or $y^{\prime}>0$.
$f(x)$ is said to be decreasing if as x increases, $f(x)$ decreases.
For a decreasing function, $f^{\prime}(x)<0$ or $y^{\prime}<0$.

Ex. 1. Sketch the graph of the function $f(x)$ that satisfies $f^{\prime}(x)>0$ for $x<-2$ and $x>3$ and

$$
f^{\prime}(x)<0 \text { for }-2<x<3
$$

Ex. 2. Sketch the graph of $f(x)$, assuming $f(0)=1$ and given the graph of the derivative $f^{\prime}(x)$.

Ex. 3. Find all critical points of the following functions. Identify the critical points as local maxima, local minima or neither and sketch the graph.
a)

$$
\begin{aligned}
& f(x)=x^{3}-3 x+2 \\
& f^{\prime}(x)=3 x^{2}-3
\end{aligned}
$$

For maximin.

$$
\begin{gathered}
f^{\prime}(x)=0 \\
3 x^{2}-3=0 \\
x^{2}=1 \\
x= \pm 1
\end{gathered}
$$

	x	$f(x)$	$f^{\prime}(x)$
	-2	0	+
$*$	-1	4	0 max
	0	2	-
*	1	0	0 min.
2	4	+	

\therefore the critical points are $(-1,4)$ a local maximum and $(1,0)$ a local minimum.
b) $f(x)=\left(1-x^{2}\right)^{2}-2$
$f^{\prime}(x)=2\left(1-x^{2}\right)(-2 x)$
$f^{\prime}(x)=-4 x\left(1-x^{2}\right)$
For critical pts.

$$
\begin{array}{r}
f^{\prime}(x)=0 \\
-4 x\left(1-x^{2}\right)=0 \\
\therefore x=0 \text { or } 1-x^{2}=0 \\
x^{2}=1 \\
x= \pm 1
\end{array}
$$

\therefore the critical points are $(-1,-2) \dot{i}_{1}^{\prime}(1,-2)$ both local minima and $(0,-1)$ a local maximum.

$$
\begin{aligned}
& \text { c) } f(x)=|x| \\
& f(x)=\left\{\begin{array}{llr|l|l}
-x & \text { if } x<0 & x<0 & & - \\
x & \text { if } x \geq 0 & 0 & 0 & x(x) \\
f^{\prime}(x) \\
\text { min. }
\end{array}\right. \\
& f^{\prime}(x)=\left\{\begin{array}{lll}
-1 & \text { if } x<0 & x>0
\end{array}\right. \\
& 1
\end{aligned}
$$

$\because f^{\prime}(0)$ dine.
$\therefore(0,0)$ is a critical

pt., a local minimum.

$$
\begin{aligned}
& \text { d) } f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2} \\
& \text { For critical } \\
& \text { pts. }
\end{aligned}
$$

$$
\begin{aligned}
& x=0
\end{aligned}
$$

 pt, neither a maximum or minimum.

Ex. 4. The function $f(x)=x^{3}+a x+b$ has a turning point at ($-2,6$). Find the constants a and b and the function $f(x)$.

$$
\begin{array}{ccc}
f(x)=x^{3}+a x+b & & \text { sub } a=-12 \text { in }(1) \\
f^{\prime}(x)=3 x^{2}+a & \text { turning pt. } & -2(-12)+b=14 \\
\text { p+. (-2,6) } & \text { at } x=-2(2) & 24+b=14 \\
f(-2)=6 & f^{\prime}(-2)=0 & b=-10 \\
(-2)^{3}+a(-2)+b=6 & 3(-2)^{2}+a=0 & \\
-8-2 a+b=6 & 12+a=0 & \therefore a=-12, b=-10 \\
-2 a+b=14 & a=-12 & \therefore \text { (2) } \\
\text { (1) } & \therefore f(x)=x^{3}-12 x-1
\end{array}
$$

H.W. pg. 342 \# 4, 8, 9, 11 ab
pg. 350 \#2, 7bde, 9,10

Date:

Section 9.4 - CONCAVITY \& POINTS OF INFLECTION
Ex. 1. Find and classify all local extrema (local maxima and minima) of the function $f(x)=x^{3}-3 x^{2}$. Illustrate your results graphically.

$$
\begin{gathered}
f(x)=x^{3}-3 x^{2} \\
f^{\prime}(x)=3 x^{2}-6 x \\
\text { For } \operatorname{mux} / \min . \\
f^{\prime}(x)=0 \\
3 x^{2}-6 x=0 \\
3 x(x-2)=0 \\
x=0 \text { al } x=2
\end{gathered}
$$

	x	$f(x)$	$f^{\prime}(x)$
	-1	-4	+
$*$	0	0	0
	1	-2	-
$*$	2	-4	0
	3	0	+

Applications of the Second Derivative for Curve Sketching: $f^{\prime \prime}(x)$ or $y^{\prime \prime}$

Note: 1. $f(x)$ is concave up if $f^{\prime \prime}(x)>0$ or $y^{\prime \prime}>0$.
2. $f(x)$ is concave down if $f^{\prime \prime}(x)<0$ or $y^{\prime \prime}<0$.
3. For inflection points $f^{\prime \prime}(x)=0$ or $y^{\prime \prime}=0$

Second Derivative Test for Local Extrema
For a local maximum, $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$.
For a local numina $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$.
minimum

Ex. 2. Find and classify all local extrema of the function $f(x)=3 x^{5}-25 x^{3}+60 x$ using the second derivative test. Illustrate your results graphically.
$f(x)=3 x^{5}-25 x^{3}+60 x$
$f^{\prime}(x)=15 x^{4}-75 x^{2}+60$
$f^{\prime \prime}(x)=60 x^{3}-150 x$
For $\max / \min , f^{\prime}(x)=0$

$$
\begin{aligned}
& \text { by } 15 x^{4}-75 x^{2}+60=0 \\
& x^{4}-5 x^{2}+4=0 \\
& \left(x^{2}-1\right)\left(x^{2}-4\right)=0 \\
& (x-1)(x+1)(x-2)(x+2)=0 \\
& \therefore x= \pm 2 \text { or } x= \pm 1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l|l}
x & f(x) & f^{\prime}(x) & f^{\prime \prime}(x) \\
\hline-2 & -16 & 0 & - \text { A max. }
\end{array} \\
& \text { are local maxima and } \\
& (-1,-38):(2,16) \text { are local } \\
& \text { minima. }
\end{aligned}
$$

Ex. 3. Identify the point on the graph that satisfies the following conditions:
a) $y>0, y^{\prime}>0, y^{\prime \prime}<0$ \qquad inc., concave down
b) $y>0, y^{\prime}<0, y^{\prime \prime}<0$ \qquad dec, concave down
c) $y<0, y^{\prime}>0, y^{\prime \prime}>0$ \qquad I
d) $y<0, y^{\prime}=0, y^{\prime \prime}<0$ \qquad none

e) $y=0, y^{\prime}>0, y^{\prime \prime}<0$ \qquad B inflection pt.

f) $y>0, y^{\prime}<0, y^{\prime \prime}=0$ \qquad F

Ex.4. Sketch the graph of a function that satisfies the following conditions: $f^{\prime \prime}(x)>0$ on the interval $x<2 ; f^{\prime \prime}(x)<0$ on the interval $x>2 ; f(2)=0 ; f^{\prime}(2)>0$

Ex. 5.

Interval	$x<2$	$x=2$	$x>2$
$f^{\prime \prime}(x)$	+	0	-
$f^{\prime}(x)$		+	
$f(x)$	concave	0	concave
	up	down	
		P.O.I at	
		$(2,0)$	

a) On what intervals is the graph of $f(x)$

On what intervals is the graph of $f(x)$
$\begin{array}{lll}\text { i) concave up? } y^{\prime \prime}>0 & \text { ii) concave down? } y^{\prime \prime}<0\end{array}$ $x>-1$ $x<-1$
b) List the x-coordinates of all points of inflection. $y^{\prime \prime}=0$ at $x=-1$
c) Make a rough sketch of a possible graph of $f(x)$, assuming that $f(0)=1$.
if $x<-1$ if $x>-1$
concave
down
Concave
up

Ex. 6. Determine the constants a, b, c and d so that the curve $y=a x^{3}+b x^{2}+c x+d$ has a point of inflection at the origin and a local maximum at the point $(2,4)$.

$$
\begin{align*}
& y=a x^{3}+b x^{2}+c x+d \tag{1}\\
& y^{\prime}=3 a x^{2}+2 b x+c \tag{2}\\
& y^{\prime \prime}=6 a x+2 b
\end{align*}
$$

inflection point $(0,0)$

$$
\begin{gathered}
1 f x=0, y=0 \\
d=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } x=0, y^{\prime \prime}=0 \\
& 6 a(0)+2 b=0
\end{aligned}
$$

$$
b=0
$$

local max at $(2,4)$

$$
\begin{align*}
& \therefore a=-\frac{1}{4}, b=0, c=3 \tag{3}\\
& d=0 \text { and }
\end{align*}
$$

$$
y=-\frac{1}{4} x^{3}+3 x
$$

(4)
if $x=2, y=4$

$$
\begin{aligned}
& 8 a+4 b+2 c+d=4 \\
& \because b=0!d=0
\end{aligned}
$$

$\div \frac{b y}{}$

$$
\begin{aligned}
& \text { if } x=2, y^{\prime}=0 \\
& 12 a+4 b+c=0 \\
& \because b=0 \\
& \therefore 12 a+c=0
\end{aligned}
$$

Solve. $4 a+c=2$ (3)

$$
\text { (3)-(4) } \begin{array}{rr}
\begin{aligned}
& 12 a+c=0-4) \\
& \frac{-8 a=2}{-8} \text { sub } a=-\frac{1}{4} \operatorname{in}(3) \\
& a=-\frac{1}{4} 4\left(-\frac{1}{4}\right)+c=2 \\
&-1+c=2 \\
& c=3
\end{aligned}
\end{array}
$$

Ex. 7. Evaluate $f^{\prime \prime}(x)$ at the indicated value, and state whether the graph lies above or below the tangent for $f(x)=\frac{1}{2 x^{2}+1}, x=1$. Sketch the graph near the point where $x=1$.

$$
\begin{aligned}
f(x) & =\left(2 x^{2}+1\right)^{-1} & & f^{\prime \prime}(1)=\frac{4(5)}{27} \\
f^{\prime}(x) & =-\left(2 x^{2}+1\right)^{-2}(4 x) & & =\frac{20}{27} \\
f^{\prime}(x) & =-4 x\left(2 x^{2}+1\right)^{-2} & & \because f^{\prime \prime}(1)>0 \\
f^{\prime \prime}(x) & =-4\left(2 x^{2}+1\right)^{-2}-2\left(2 x^{2}+1\right)^{-3}(4 x) \cdot(-4 x) & & \text { the graph lies above up } \\
& =-4\left(2 x^{2}+1\right)^{-2}+32 x^{2}\left(2 x^{2}+1\right)^{-3} & & \text { the tangent. } \\
& =-4\left(2 x^{2}+1\right)^{-3}\left[2 x^{2}+1-8 x^{2}\right] & & f^{\prime}(1)=-\frac{4}{9} \text { der } \\
& =-4\left(2 x^{2}+1\right)^{-3}\left(1-6 x^{2}\right) & & f(1)=\frac{1}{3}
\end{aligned}
$$

H.W. pg. 369 \#1, 2acd, 3acd, 4abc \& (\#9 Unit 4 Day 2 Worksheet, 4b Unit 4 Review Days 1-3);

Warm-up:

Given $f(x)=\frac{1}{2 x^{2}+1}, \quad f^{\prime}(x)=\frac{-4 x}{\left(2 x^{2}+1\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{4\left(6 x^{2}-1\right)}{\left(2 x^{2}+1\right)^{3}}$ determine the intervals where the function is i) increasing, decreasing ii) concave up, concave down. For $\mathrm{max} / \mathrm{min}$.

i) Interval | $x<0$ | $x>0$ | |
| :---: | :---: | :---: |
| $f^{\prime}(x)$ | + | - |
| $f(x)$ | increasing | decreasing |

i) $f^{\prime}(x)=0$
$-4 x=0$

$$
x=0
$$

$\therefore f(x)$ is increasing for $x<0$ or $x \in(-\infty, 0)$
$\dot{\varepsilon}$. decreasing for $x>0$ or $x \in(0,+\infty)$
ii) Interval $\left.\left|x<-\frac{1}{\sqrt{6}}\right|-\frac{1}{\sqrt{6}}<x<\frac{1}{\sqrt{6}} \right\rvert\, c>\frac{1}{\sqrt{6}}$.
ii) For pts.
 inflection

$$
f^{\prime \prime}(x)=0
$$

$$
6 x^{2}-1=0
$$

$$
x^{2}=\frac{1}{6}
$$

$\therefore f(x)$ is concave
up for $x<-\frac{1}{\sqrt{6}}$ or $x>\frac{1}{\sqrt{6}}$ $x= \pm \frac{1}{\sqrt{6}}$ $\dot{\Sigma}_{1}$ concave down for $-\frac{1}{\sqrt{6}}<x<\frac{1}{\sqrt{6}}$.

Sketching the Graph of a Polynomial or Rational Function

1. Use the function to

- determine the domain and any discontinuities
- determine the intercepts
- find any asymptotes, and determine function behaviour relative to these asymptotes

2. Use the first derivative to

- find the critical numbers
- determine where the function is increasing and where it is decreasing
- identify any local maxima or minima

3. Use the second derivative to

- determine where the graph is concave up and where it is concave down
- find any points of inflection

The second derivative can also be used to identify local maxima and minima.
4. Calculate the values of y that correspond to critical points and points of inflection. Use the information above to sketch the graph.
Remember that you will not use all the steps in every situation! Use only the steps that are necessary to give you a good idea of what the graph will look like.

Ex. Graph $f(x)=3 x^{4}-4 x^{3}$ by finding and labeling all intercepts, local max/min and inflection points.
Identify intervals for which the function is increasing, decreasing, concave up and concave down.

$$
\begin{aligned}
& D=\{x \in R\} \\
& f(x)=3 x^{4}-4 x^{3} \\
& f^{\prime}(x)=12 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=36 x^{2}-24 x
\end{aligned}
$$

For critical
pts.

$$
f^{\prime}(x)=0
$$

$$
12 x^{3}-12 x^{2}=0
$$

$$
12 x^{2}(x-1)=0
$$

$$
\therefore x=0 \text { or } x=1
$$

$\therefore(1,-1)$ is a
local minimum
intercepts
For $x-\operatorname{lnt}(5)$, $f(x)=0$
$3 x^{4}-4 x^{3}=0$
$x^{3}(3 x-4)=0$
x-lints are $0 \leqslant \frac{4}{3}$
For inflection pts

$$
\begin{aligned}
& f^{\prime \prime}(x)=0 \\
& 36 x^{2}-24 x=0 \\
& 12 x(3 x-2)=0 \\
& x=0 \text { or } x=\frac{2}{3}
\end{aligned}
$$

\therefore the inflection

$$
\begin{aligned}
& \text { at he inflection } \\
& \text { pts } \operatorname{are}(0,0) \dot{\xi}\left(\frac{2}{3}, \frac{-16}{27}\right)
\end{aligned}
$$

Summary:
$f(x)$ is

x	$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
-1	7	-	+
0	0	0	0
$0 \lll \frac{2}{3}$	0	-	$-\frac{16}{\frac{2}{3}}$
$\boldsymbol{*}^{\frac{1}{27}}$	1	0	0
2	-1	0	+
2	16	+	+

increasing for $x \in(1,+\infty)$. A^{y} decreasing for $x \in(-\infty, 1)$ concave up for O. OI $x \in(-\infty, 0) \cup\left(\frac{2}{3},+\infty\right)$ + min concave down for $+\quad x \in\left(0, \frac{2}{3}\right)$

