## Vertical Asymptotes and Infinite Limits

A rational function of the form $f(x)=\frac{p(x)}{q(x)}$ has a vertical asymptote at $x=c$ if

- $q(c)=0$ and $p(c) \neq 0$

Note: If $q(c)=0$ and $p(c)=0$ then a hole is created at $x=c$

- $\lim _{x \rightarrow c^{-}} f(x)=+\infty, \lim _{x \rightarrow c^{-}} f(x)=-\infty, \lim _{x \rightarrow c^{+}} f(x)=+\infty$ or $\lim _{x \rightarrow c^{+}} f(x)=-\infty$


## Horizontal Asymptotes and Limits at Infinity

A rational function of the form $f(x)=\frac{p(x)}{q(x)}$ has a horizontal asymptote, if the degree of the numerator is less than or equal to the degree of the denominator.

It is the horizontal line that is approached as $x$ tends towards $+\infty$ and or $-\infty$. If $\lim _{x \rightarrow+\infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, we say that the line $y=L$ is the horizontal asymptote.

## Oblique Asymptotes and Limits at Infinity

A rational function of the form $f(x)=\frac{p(x)}{q(x)}$ has a linear oblique asymptote, if the degree of the numerator is exactly one more than the degree of the denominator.

It is the non-horizontal line of the form $y=m x+b$ that is approached as $x$ tends towards $+\infty$ and or $-\infty$.

Ex. 1. Given the following function, check for discontinuities and state the equation of any asymptotes. Conduct limit tests to determine the behaviour of the curve near the asymptotes and then sketch the curve.
$f(x)=\frac{2-x}{x^{2}-5 x+6}$
$f(x)=\frac{-(x-2)}{(x-3)(x-2)^{\prime}}, x \neq z \frac{1}{\varepsilon}, 2$
$f(x)=\frac{-1}{x-3}, x \neq 3,2$
hole $9(2,1)$
V.A. $x=3$
$\lim _{x \rightarrow 3^{-}} \frac{-1}{x-3} \quad \lim _{x \rightarrow 3^{+}} \frac{-1}{x-3} \quad \lim _{x \rightarrow-\infty} \frac{-1}{x-3} \quad \lim _{x \rightarrow+\infty} \frac{-1}{x-3}$

$$
\begin{aligned}
=+\infty=\square \infty & =\lim _{x \rightarrow-\infty} \frac{-\frac{1}{x}}{1-\frac{3}{x}}=0 \\
& =\frac{0}{1-6} \\
& =0
\end{aligned}
$$

Ex. 2. Graph the following by finding any asymptotes, holes, intercepts, $\max / \mathrm{min}$ and inflection points. Identify intervals for which the function is increasing, decreasing, concave up and concave down.

$$
\text { a) } f(x)=\frac{x+2}{x-5} \quad ; f^{\prime}(x)=\frac{-7}{(x-5)^{2}} ; f^{\prime \prime}(x)=\frac{14}{(x-5)^{3}}
$$



$$
f^{\prime}(x)=\frac{-7}{(x-5)^{2}}
$$

$$
f^{\prime}(x)=-7(x-5)^{-2}
$$

$$
f^{\prime \prime}(x)=14(x-5)^{-3}(1)
$$

For Critical pts.

$$
\begin{gathered}
f^{\prime}(x)=0 \\
\frac{-7}{(x-5)^{2}}=0
\end{gathered}
$$

no solution
For P.O.I
no solution

Asymptotes

$$
\text { V.A. is } x=5
$$



$$
=\lim _{x \rightarrow \pm \infty} \frac{x+2}{x-5}
$$

$$
=\lim _{x \rightarrow \pm \infty} \frac{1+\frac{2}{x}}{1-\frac{5}{x}}
$$

$$
=1
$$

$$
f^{\prime \prime}(x)=\frac{14}{(x-5)^{3}}
$$



$$
\begin{aligned}
& f(x)=H \cdot f \\
& \frac{x+2}{x-5}=\frac{1}{1}
\end{aligned}
$$

$$
x-5=x+2
$$

$$
\begin{aligned}
& x-5=x+2 \\
& -5=2 \text { NoT }
\end{aligned}
$$

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $f^{\prime \prime}(x)$ |
| ---: | :--- | :--- | :--- |
| $\times<5$ |  | - | - |
| 5 | $\propto$ | $>$ | $>$ |
| $x>5$ |  | - | $+\quad$ |

Summary: $f(x)$ is:
increasing for no $\pi$-values
decreasing for $\quad x \in \mathbb{R}, x \neq 5$ or

$$
x<5 \text { or } x>5
$$

concave up for $\quad x>5$
concave down for $\quad x<5$
b) $g(x)=\frac{x^{2}}{x+1}$

Rewrite as a mixed rational

$$
\begin{aligned}
& g(x)=(x-1)+\frac{1}{x+1} \\
& g(x)=x-1+(x+1)^{-1} \\
& g^{\prime}(x)=1-(x+1)^{-2} \\
& g^{\prime \prime}(x)=2(x+1)^{-3} \\
& g^{\prime \prime}(x)=\frac{2}{(x+1)^{3}}
\end{aligned}
$$

$$
\begin{array}{r}
x-1 \\
x+1) x^{2}+0 x+0 \\
x^{2}+x \downarrow \\
\hline-x+0 \\
\frac{-x-1}{1}
\end{array}
$$



For P.O.I.
pts.

$\therefore$ no inflection pts.

| $x$ | $g(x)$ | $g^{\prime}(x)$ | $g^{\prime \prime}(x)$ |
| :---: | :---: | :---: | :--- |
| $x^{<-2}$ |  | + | - |
| -2 | -4 | 0 | - |
| -1 | $\times$ | $\bar{X}$ | $\bar{X}$. |
| 0 | 0 | - | + |
| $x>0$ |  | + | + |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |



Summary: $g(x)$ is:
increasing for $x \in(-\infty,-2) \cup(0,+\infty)$
decreasing for $x \in(-2,-1) \cup(-1,0)$
concave up for $\chi \in(-1,+\infty)$
concave down for $x \in(-\infty,-1)$

H.W. Graph the following by finding any asymptotes, holes, intercepts, max $/ \mathrm{min}$ and inflection points. Identify intervals for which the function is increasing, decreasing, concave up and concave down.
a) $y=\frac{x^{3}-3 x^{2}-4 x+12}{x^{3}-3 x^{2}-x+3}$
b) $y=\frac{1}{x^{2}+3}$
c) $f(x)=\frac{x^{2}}{1-x^{2}}$
d) $f(x)=\frac{x^{2}+x+1}{x}$
e) $y=\frac{1+x-x^{2}}{x-1}$

$$
f(x)=(x+1)+\frac{1}{x}
$$

## Date:

Ex. 1. For each of the following, sketch the graph of a function $y=f(x)$, that satisfies the given conditions.
a) $f(-2)=4 ; f(-1)=2 ; f(0)=1 ; f^{\prime}(-2)=0 ; f^{\prime}(-1)=-3 ; f^{\prime}(0)=0 ; f^{\prime \prime}(-1)=0$; $f^{\prime \prime}(x)<0$ for all $x<-1 ; f^{\prime \prime}(x)>0$ for all $x>-1$.
b) $\lim _{x \rightarrow+\infty} f(x)=0 ; \lim _{x \rightarrow-\infty} f(x)=0$; there is a vertical asymptote at $x=-1$ and $x=3 ; f(1)=1 ; f^{\prime}(x)>0$ for $x<-1$ or $x>3 ; f^{\prime}(x)<0$ for $-1<x<3 ; f^{\prime \prime}(x)>0$ for $x<-1$ or $-1<x<1 ; f^{\prime \prime}(x)<0$ for $1<x<3$ or $x>3$.
c) $\quad f(0)=0 ; f(1)=1 ; f(-1)=1 ; f^{\prime}(1)=\frac{2}{3} ; f^{\prime}(-1)=-\frac{2}{3} ; f(x)$ is decreasing for all $x<0$; $f(x)$ is concave down for all $x \neq 0$; there is a cusp at $x=0$.
d) $f(-1)=-2 ; f(1)=2 ; \lim _{x \rightarrow 0^{-}} f(x)=-\infty ; \lim _{x \rightarrow 0^{+}} f(x)=\infty$; there is a maximum point at $x=-1$; there is a minimum point at $x=1 ; f(x)$ is concave down for $x<0 ; f(x)$ is concave up for $x>0 ; y=x$ is an oblique asymptote on both sides of the $y$-axis.
b)

d)

a)


Ex. 2. Use the algorithm for curve sketching to graph each of the following.

$$
\begin{aligned}
\text { a) } y & =\sqrt[3]{x-1} \\
y= & (x-1)^{\frac{1}{3}} \\
y^{\prime} & =\frac{1}{3}(x-1)^{-\frac{2}{3}} \\
y^{\prime \prime} & =-\frac{2}{9}(x-1)^{-\frac{5}{3}} \\
y^{\prime}= & \frac{1}{3 \sqrt[3]{(x-1)^{2}}} \\
y^{\prime \prime}= & \frac{-2}{9 \sqrt[3]{(x-1)^{5}}}
\end{aligned}
$$

$D=\{x \in \mathbb{R}\}$ For $x-\operatorname{in} t, y=0$

$$
\sqrt[3]{x-1}=0
$$

$\therefore x \cdot$ int. is 1
For $y$-int. $x=0$

$$
x-1=0^{3}
$$

$$
x=1
$$

$$
\begin{aligned}
& y=\sqrt[8]{-1}, 1 \\
& y=-1 \\
& \therefore y \text {-int is }-1
\end{aligned}
$$

For critical pts.,

| $x$ | $y$ | $y^{\prime}$ | $y^{\prime \prime}$ | $y^{\prime \prime}=$ |
| :---: | :--- | :--- | :--- | :--- |
| $x<1$ |  | + | +inc. <br> con. up | no |
| $\forall \quad 1$ | 0 | $\chi$ | $\chi$ P.o.I |  |
| $x>1$ |  | + | -increasing <br> concave down |  |

$$
y^{\prime \prime}=0
$$

no solution
b) $f(x)=(3 x-6)^{\frac{2}{3}}$ or $f(x)=\sqrt[3]{(3 x-6)^{2}} ; D=\{x \in \mathbb{R}\}$

$$
f^{\prime \prime}(x)=-2(3 x-6)^{\frac{-4}{3}}
$$

$$
f^{\prime}(x)=\frac{2}{\sqrt[3]{3 x-6}}
$$

$$
f^{\prime \prime}(x)=\frac{-2}{\sqrt[3]{(3 x-6)^{4}}}
$$

$\therefore$ the critical pt. is $(2,0)$ a local For P.O.I,

| $x$ | $f(x)$ | $f^{\prime}(x)$ | $f^{\prime \prime}(x)$ |
| ---: | :--- | :--- | :--- |
| x<2  <br> $* \min .2$ 0 | $\times$ | -decreasing <br> concave <br> down |  |
| $x>2$ |  | + | - |
| increasing |  |  |  |
| concave of ur |  |  |  |

$$
f^{\prime \prime}(x)=0
$$

no solution


$$
\begin{aligned}
& f^{\prime}(x)=\frac{2}{3}(3 x-6)^{-\frac{1}{3}} \cdot(3) \\
& f^{\prime}(x)=2(3 x-6)^{-\frac{1}{3}} \\
& \text { For } x-\operatorname{lnt}, f(x)=0 \\
& (3 x-6)^{\frac{2}{3}}=0 \\
& 3 x-6=0 \\
& 3 x-6=0 \\
& \begin{array}{l}
x=2 \\
\therefore x-\text { int is } 2
\end{array} \\
& \text { For } y-\operatorname{int}, x=0 \\
& f(6)=\sqrt[3]{(-6)^{2}} \\
& f^{\prime \prime}(x)=\frac{-2}{3}(3 x-6)^{-\frac{4}{3}}(3)
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } f(x) & =e^{-x^{2}} \\
f^{\prime}(x) & =e^{-x^{2}}(-2 x) \\
f^{\prime}(x) & =-2 x \cdot e^{-x^{2}} \\
f^{\prime \prime}(x) & =-2 \cdot e^{-x^{2}}+e^{-x^{2}}(-2 x) \cdot(-2 x) \\
& =-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}} \\
& =4 x^{2} e^{-x^{2}}-2 e^{-x^{2}} \\
\therefore f^{\prime \prime}(x) & =2 e^{-x^{2}}\left(2 x^{2}-1\right)
\end{aligned}
$$

$$
f(x)=\frac{1}{e^{x^{2}}}
$$

$$
D=\{x \in \mathbb{R}\}
$$

$$
\text { For } x \text {-int, }
$$

$$
f(x)=0
$$

$$
\frac{1}{e^{x^{2}}}=0
$$

no sol n

$$
\therefore \text { no } x-1 n t \text {. }
$$

$$
\begin{aligned}
& \text { For } y-\operatorname{lnt}, x=0 \\
& \quad f(0)=1 \\
& \therefore y \text {-int is } 1
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{-2 x}{e^{x^{2}}} \\
& f^{\prime \prime}(x)=\frac{2\left(2 x^{2}-1\right)}{e^{x^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
f\left(-\frac{1}{\sqrt{2}}\right) & =\frac{1}{e^{\frac{1}{2}}} \\
& =\frac{1}{\sqrt{e}} \\
f\left(+\frac{1}{\sqrt{2}}\right) & =\frac{1}{\sqrt{e}}
\end{aligned}
$$



For inflection pts,

$$
\begin{aligned}
& f^{\prime \prime}(x)=0 \\
& 2 x^{2}-1=0 \\
& x^{2}=\frac{1}{2} \\
& x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

. the P.O.I are.

For $h \cdot a, \quad \therefore$ h. $a$ is
$\lim _{x \rightarrow \pm \infty} f(x), \quad y=0$.

$$
=\lim _{x \rightarrow \pm \infty} \frac{1}{e^{x^{2}}}
$$

$$
=0
$$

For critical pts,

$$
\begin{gathered}
f^{\prime}(x)=0 \\
-2 x=0 \\
x=0
\end{gathered}
$$

$$
f(0)=1
$$

$\therefore$ the critical pt. $(0,1)$ is a local maximum.

