

UNIT 7 - VECTORS Section 4.1 - VECTOR CONCEPTS

Definition: A scalar is a quantity that has <u>magnitude</u> only. A vector is a quantity that has <u>magnitude</u> and <u>direction</u>.

Scalar Quantity	Vector Quantity
 distance Maya lives 100 km from Kitchener. 	 displacement Maya lives 100 km northeast of Kitchener.
2. speed	2. velocity
The jet is travelling at 900 km/h.	The jet is travelling at 900 km/h west.
3. mass Joe has a mass of 100 kg.	3. weight Joe has a weight of 980 N (downwards).

A vector can be expressed geometrically by a *directed line segment*.

- "*directed* " means that one end has been designated the *tail* and the other end the *head*.
- the direction is from its $\frac{1}{2}$ to its $\frac{head}{head}$.

The *notation* used to describe vector quantities is as follows:

ii) $|\vec{u}|$ and $|\vec{v}|$ are the magnitudes of the vectors \vec{u} and \vec{v} .

iv) $|\overrightarrow{AB}|$ is the magnitude of vector \overrightarrow{AB} .

Definitions:

Equal Vectors: Two vectors are equal if and only if their magnitudes and their directions

Opposite Vectors: Two *vectors* are *opposite* if they have the *same magnitude* but *opposite directions*.

When two *vectors* are *opposite*, such as \overrightarrow{AB} and \overrightarrow{CD} , one is the *negative* of the other: $\overrightarrow{AB} = -\overrightarrow{CD}$ or $\overrightarrow{CD} = -\overrightarrow{AB}$

Parallel Vectors: Two vectors are parallel if their directions are the same or opposite.

Zero Vector: The *zero vector*, $\vec{0}$, has a *magnitude* of 0 and a *direction* that is *undefined*.

Unit Vector: A unit vector, \hat{v} , has a magnitude of 1 unit, ie. $|\hat{v}| = 1$.

1. A unit vector in the direction of any vector \vec{v} can be found by dividing \vec{v} by its magnitude $|\vec{v}|$.

2. Any vector \vec{v} can be expressed as the product of its magnitude $|\vec{v}|$ and a unit vector \hat{v} in the direction of \vec{v} .

- **Ex. 1.** *ABCDEF* is a regular hexagon. Find two vectors which are:
 - a) equal
 - **b**) parallel but having different magnitudes
 - c) equal in magnitude but opposite in direction

Ex. 3. A driver travels 3 km due east and then 5 km due north. Find the *resultant vector*, \vec{r} . scale: $l \ cm = 2 \ km$

"Bearings" are used to describe direction as:i) an angle measured in a clockwise direction.

Ex. 4. Express $N39^{\circ}W$ as a bearing.

.. N39°W is a bearing of 321°.

Ex. 5. Mary drives 30 km due east and then 50 km $N45^{\circ}E$. Find the *resultant vector*, \vec{r} .

Section 4.2 – Vector Laws – Geometrically

Ex. 1. Consider a particle at a point *A* and suppose that the particle is displaced 10 cm to the right and then 3 cm upwards. Determine the resultant vector.

VECTOR ADDITION:

Suppose you are given two vectors \vec{u} and \vec{v} , below.

There are two ways of adding vectors geometrically.

I Triangle Law of Addition

Find the sum $\vec{u} + \vec{v}$.

- translate the vectors so the "tail" of \vec{v} is at the "head" of \vec{u} . ie. "head-to-tail"

II Parallelogram Law of Addition

Find the sum $\vec{u} + \vec{v}$ and difference $\vec{u} - \vec{v}$.

- translate \vec{u} and \vec{v} so that they are "tail-to-tail".

- the resultant vector is the vector from the "tail" of \vec{u} to the "head" of \vec{v} .

- complete the parallelogram
- the sum $\vec{u} + \vec{v}$ is the diagonal of the parallelogram that originates at the "tails".
- the difference $\vec{u} \vec{v}$ is the vector created by the second diagonal.

How does the $|\vec{u} + \vec{v}|$ compare to $|\vec{u}|$ and $|\vec{v}|$?

Ex. 3. Find the magnitude and direction of the sum of two vectors \vec{u} and \vec{v} , if their magnitudes are 5 and 8 respectively, and the angle between them is 30°. Find $\vec{u} + \vec{v}$. Note: The angle between their tails is 30°.

Ex. 4. \hat{p} and \hat{q} are unit vectors that make an angle of 50° with each other. Find $|3\hat{p} - 5\hat{q}|$.

HW: pg. 133 #1, 2, 4 to 9, 14, 15, 18 to 21 Note: Answer for #5 should be 37.7 km E15° S