UNIT 7 - VECTORS
Section 4.1 - VECTOR CONCEPTS
Definition: A scalar is a quantity that has magnitude only.
A vector is a quantity that has \qquad and \qquad .

Scalar Quantity	Vector Quantity
1. distance	1. displacement
Maya lives 100 km from Kitchener.	Maya lives 100 km northeast of Kitchener.
2. speed	2. velocity
The jet is travelling at $900 \mathrm{~km} / \mathrm{h}$.	The jet is travelling at $900 \mathrm{~km} / \mathrm{h}$ west.
3. mass	3. weight
Joe has a mass of 100 kg.	Joe has a weight of 980 N (downwards).

A vector can be expressed geometrically by a directed line segment.

- "directed" means that one end has been designated the tail and the other end the head.
- the direction is from its tail to its head. and is designated by an arrow.

The notation used to describe vector quantities is as follows:
i) \vec{u} and \vec{v} are vectors.

iii) $\overrightarrow{A B}$ is the vector that starts
at point A and ends at point B.

ii) $\quad|\vec{u}|$ and $|\vec{v}|$ are the magnitudes of the vectors \vec{u} and \vec{v}.
iv) $|\overrightarrow{A B}|$ is the magnitude of vector $\overrightarrow{A B}$.

Definitions:

Equal Vectors: Two vectors are equal if and only if their magnitudes and their directions are the same.

$\mid f_{1}$ i) $|\overrightarrow{A B}|=|\overrightarrow{C D}|$
\& ii) same directias
i) $|\overrightarrow{A B}|=|\overrightarrow{C B}|$
ii) some directions

Opposite Vectors: Two vectors are opposite if they have the same magnitude but opposite directions.
When two vectors are opposite, such as $\overrightarrow{A B}$ and $\overrightarrow{C D}$, one is the negative of the other: $\overrightarrow{A B}=-\overrightarrow{C D}$ or $\overrightarrow{C D}=-\overrightarrow{A B}$

Note: $-\overrightarrow{C D}=\overrightarrow{D C}$ and $-\overrightarrow{A B}=\overrightarrow{B A}$

Parallel Vectors: Two vectors are parallel if their directions are the same or opposite.

Zero Vector: The zero vector, $\overrightarrow{0} \xrightarrow{\longrightarrow}$ has a magnitude of 0 and a direction that is undefined.

Unit Vector: A unit vector, \hat{v}, has a magnitude of 1 unit, ie. $|\hat{v}|=1$.

1. A unit vector in the direction of any vector \vec{v} can be found by dividing \vec{v} by its magnitude $|\vec{v}|$.

2. Any vector \vec{v} can be expressed as the product of its magnitude $|\vec{v}|$ and a unit vector \hat{v} in the direction of \vec{v}.

$$
\vec{v}=|\vec{v}| \hat{v}
$$

Ex. 1. $A B C D E F$ is a regular hexagon. Find two vectors which are:
a) equal
b) parallel but having different magnitudes
c) equal in magnitude but opposite in direction
a)
$\begin{array}{ll}\overrightarrow{A B}=\overrightarrow{E D} & b, \\ \overrightarrow{F E}=\overrightarrow{B C} & \overrightarrow{D C} \\ \overrightarrow{D C} & \overrightarrow{E B}\end{array}$
c)

Ex. 2. a) Express \vec{b} and \vec{c} each as a scalar multiple of \vec{a}.

$$
\left.\begin{array}{ll}
\text { Express } b \text { and } c \text { each as a scalar multiple of } a & { }^{2} \\
|\vec{a}|^{2}=1^{2}+2^{2} & |\vec{b}|^{2}=5^{2}+10^{2} \\
|\vec{c}|^{2}=3^{2}+6^{2} \\
|\vec{a}|=\sqrt{5} & |\vec{b}|=\sqrt{125} \\
|\vec{b}|=\sqrt{45} \\
\therefore \vec{b}=5 \vec{a} & |\vec{c}|=5 \sqrt{5}
\end{array} \right\rvert\, \begin{array}{ll}
|\vec{c}|=3 \sqrt{5}
\end{array}
$$

b) Express \vec{a}, \vec{b} and \vec{c} each in terms of the unit vector \widehat{a}.

$$
\begin{aligned}
\hat{a} & =\frac{1}{|\vec{a}|} \vec{a} \cdot \vec{a}=\sqrt{5} \hat{a}, \vec{b}=5 \sqrt{5} \hat{a} \quad, \vec{c}, \vec{c}=-3 \sqrt{5} \hat{a} \\
& =\frac{1}{\sqrt{5}} \vec{a}
\end{aligned}
$$

Ex. 3. A driver travels 3 km due east and then 5 km due north. Find the resultant vector, \vec{r}.
scale: $1 \mathrm{~cm}=2 \mathrm{~km}$
N

Ex. 4. Express $N 39^{\circ} W$ as a bearing.
$\therefore N 39^{\circ} \mathrm{W}$ is a bearing of 321°.

Find $|\vec{r}| \quad$ Find θ

$$
\begin{array}{ll}
|\vec{r}|=\sqrt{3^{2}+5^{2}} & \tan \theta=\frac{5}{3} \\
|\vec{r}|=\sqrt{34} & \theta=\tan ^{-1}\left(\frac{5}{3}\right) \\
|\vec{r}|=5.8 & \theta=59^{\circ}
\end{array}
$$

5 km

NE

Ex. 5. Mary drives 30 km due east and then $50 \mathrm{~km} N 45^{\circ} E$.
Find the resultant vector, \vec{r}.

$$
\begin{aligned}
& \text { scale: } 1 \mathrm{~cm}=10 \mathrm{~km} \\
& \text { Find } \theta \\
& \begin{array}{l}
\frac{\sin \theta}{50}=\frac{\sin 135^{\circ}}{74.3} \\
\sin \theta=0.4758
\end{array} \\
& \theta=\sin ^{-1}(0.4758) \\
& \theta \equiv 28^{\circ} \\
& s \quad \therefore \text { the resultant vector } \\
& \text { is about } 743 \mathrm{~km}\left[\mathrm{~N} 62^{\circ} \mathrm{E}\right]
\end{aligned}
$$

Date:
Section 4.2 - Vector Laws - Geometrically
Ex. 1. Consider a particle at a point A and suppose that the particle is displaced 10 cm to the right and then 3 cm upwards.
Determine the resultant vector.

Note: In Ex. 1. the two displacements may be represented by vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
So, $\overrightarrow{A B}+\overrightarrow{B C}$ gives the resultant \qquad .

VECTOR ADDITION:

Suppose you are given two vectors \vec{u} and \vec{v}, below.

There are two ways of adding vectors geometrically.

I Triangle Law of Addition

Find the sum $\vec{u}+\vec{v}$.

- translate the vectors so the "tail" of \vec{v} is at the "head" of \vec{u}.
ie. "head-to-tail"

- the resultant vector is the vector from the "tail" of \vec{u} to the "head" of \vec{v}.

II Parallelogram Law of Addition

Find the sum $\vec{u}+\vec{v}$ and difference $\vec{u}-\vec{v}$.

- translate \vec{u} and \vec{v} so that they are "tail-to-tail".

- complete the parallelogram
- the sum $\vec{u}+\vec{v}$ is the diagonal of the parallelogram that originates at the "tails". - the difference $\vec{u}-\vec{v}$ is the vector created by the second diagonal.

How does the $|\vec{u}+\vec{v}|$ compare to $|\vec{u}|$ and $|\vec{v}|$?

Ex. 2. Given $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} below, construct the following:
i) $\vec{b}+\vec{d}$
ii) $\vec{a}+(-\vec{a})$
iii) $3 \vec{b}+2 \vec{c}$
iv) $2 \vec{a}-\frac{2}{3} \vec{d}$
v) $\vec{c}+\vec{d}+\vec{a}$

Ex. 3. Find the magnitude and direction of the sum of two vectors \vec{u} and \vec{v}, if their magnitudes are 5 and 8 respectively, and the angle between them is 30°. Find $\underbrace{\vec{u}+\vec{v}}$,
Note: The angle between their tails is 30°.

magnitude \& direction

Find $|\vec{u}+\vec{v}|$

$$
\begin{aligned}
& |\vec{u}+\vec{v}|^{2}=5^{2}+8^{2}-2(5)(8) \cdot \cos 150^{\circ} \\
& |\vec{u}+\vec{v}|=12.6
\end{aligned}
$$

$$
|\vec{v}|=8
$$

Find θ

$$
\cos \theta=\frac{5^{2}+12.6^{2}-8^{2}}{2(5)(12.6)}
$$

$$
\cos \theta \div 0.9505
$$

$$
\theta=18^{\circ}
$$

$\therefore \vec{u}+\vec{v}$ is about 12.6 units, at an angle of 18°
to \vec{u} or 12° to \vec{v}.
Ex. 4. \hat{p} and \hat{q} are unit vectors that make an angle of 50° with each other. Find $|3 \hat{p}-5 \hat{q}|$.
"tail to tail"

