Recall: In Ex. 1. from the previous day's note we learned geometrically that

$$
=\xrightarrow[\overrightarrow{A C}]{\overrightarrow{A C}}
$$

Today we will learn how to add and subtract vectors algebraically.
Ex. 1. Add and or subtract the following vectors algebraically.
a) $\overrightarrow{P Q}+\overrightarrow{Q T}$
b) $\overrightarrow{S T}-\overrightarrow{U T}$
$=\overrightarrow{P T}$
$=\overrightarrow{S T}+\overrightarrow{T u}$
$=\overrightarrow{S U}$
c) $\overrightarrow{B A}+\overrightarrow{T B}+\overrightarrow{Q T}+\overrightarrow{P Q}$
d) $\overrightarrow{A D}-\overrightarrow{B D}-\overrightarrow{A C}-\overrightarrow{C B}$
$=\overrightarrow{P Q}+\overrightarrow{Q T}+\overrightarrow{T B}+\overrightarrow{B A}$
$=\overrightarrow{A D}+\overrightarrow{D B}+\overrightarrow{C A}+\overrightarrow{B C}$
$=\overrightarrow{P A}$
$=\overrightarrow{A D}+\overrightarrow{D B}+\overrightarrow{B C}+\overrightarrow{C A}$
$=\overrightarrow{A A}$
$=\vec{\sigma}$

## Properties of Vector Algebra

Given $\vec{a}, \vec{b}$ and $\vec{c}$ are distinct non-zero vectors and $k$ and $m$ are real numbers, then

## A. Properties of Vector Addition <br> B. Properties of Scalar Multiplication

*1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
Commutative Law
*2. $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
Associative Law
3. $\vec{a}+\overrightarrow{0}=\vec{a}$
4. $\vec{a}+(-\vec{a})=\overrightarrow{0}$

1. $(k m) \vec{a}=k(m \vec{a})=m(k \vec{a})$ Associative Law
*2. $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$ Distributive Law
2. $(k+m) \vec{a}=k \vec{a}+m \vec{a}$ Distributive Law

* We will prove these vector properties.
A. 1. Prove: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$ (Commutative Law for Vector Addition)

Proof: Let $\vec{a}$ and $\vec{b}$ be distinct non-zero vectors.

$$
\begin{aligned}
& L \cdot S . \\
& =\vec{a}+\vec{b} \\
& =\overrightarrow{S P}+\overrightarrow{P Q} \\
& =\overrightarrow{S Q} \\
& \text { RmS. } \\
& =\vec{b}+\vec{a} \\
& =\overrightarrow{S R}+\overrightarrow{R Q} \\
& =\overrightarrow{S O} \\
& \because \text { LbS =RmS. } \quad \therefore \vec{a}+\vec{b}=\vec{b}+\vec{a}
\end{aligned}
$$


A. 2. Prove: $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$ (Associative Law for Vector Addition)

Proof: Let $\vec{a}, \vec{b}$ and $\vec{c}$ be distinct non-zero vectors.

$=(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{C D}=\overrightarrow{A B}+(\overrightarrow{B C}+\overrightarrow{C D})$
$=\overrightarrow{A C}+\overrightarrow{C D}=\overrightarrow{A B}+\overrightarrow{B D}$
$=\overrightarrow{A D}$

$$
\because \text { L.S. }=\text { R.S. } \quad \therefore \quad(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})
$$

B. 2. Prove: $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$ (Distributive Law for Scalar Multiplication)

Proof: Let $\vec{a}, \vec{b}$ anole $\vec{r}$ be distinct nonzero vectors.
Draw r $\triangle P S T$, where

$$
\begin{aligned}
& \overrightarrow{P S}=k \vec{a} \\
& \overrightarrow{S T}=k B \\
& \text { So } \begin{array}{l}
\triangle P Q R
\end{array} \overrightarrow{P P S T} \\
& \overrightarrow{P S}=\frac{\overrightarrow{S T}}{\overrightarrow{Q R}}=k \\
& \therefore \frac{\overrightarrow{P T}}{\overrightarrow{P R}}=k \\
& \frac{P T}{P T}=k \overrightarrow{P R}
\end{aligned}
$$



Ex. 2. Simplify.

$$
\begin{aligned}
& \text { a) } 4 \vec{v}+3 \vec{v}-2 \vec{v} \\
& =5 \overrightarrow{\mathrm{v}}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& 3 \vec{u}+4(\vec{v}-\vec{u}) \\
= & 3 \vec{u}+4 \vec{v}-4 \vec{u} \\
= & 4 \vec{v}-\vec{u} \\
& \text { or } \\
- & \vec{u}+4 \vec{v}
\end{aligned}
$$

c) $4(\vec{a}+\vec{b})+3(\vec{a}-\vec{b})$
d) $2(\vec{b}-\vec{a})-5(\vec{b}+\vec{a})$

$$
\begin{aligned}
& =4 \vec{a}+4 \vec{b}+3 \vec{a}-3 \vec{b} \\
& =7 \vec{a}+\vec{b}
\end{aligned}
$$

$$
=2 \vec{b}-2 \vec{a}-5 \vec{b}-5 \vec{a}
$$

$$
=-7 \vec{a}-3 \vec{b}
$$

$$
-3 \vec{b}-7 \vec{a}
$$

test
Ex. 3. If $\vec{u}=2 \vec{a}-3 \vec{b}$ and $\vec{v}=4 \vec{a}+5 \vec{b}$ then express $\vec{a}$ and $\vec{b}$ in terms of $\vec{u}$ and $\vec{v}$.

$$
\begin{aligned}
& \vec{u}=2 \vec{a}-3 \vec{b} \\
& \vec{v}=4 \vec{a}+5 \vec{b}
\end{aligned}
$$

Eliminate $\vec{b}$
Eliminate $\vec{a}$
(1) $\times 5 \quad 5 \vec{u}=10 \vec{a}-15 \vec{b}$
(1) $\times 2 \quad 2 \vec{u}=4 \vec{a}-6 \vec{b}$
(2) $\times(-3)-3 \vec{v}=-12 \vec{a}-15 \vec{b}$
(2) $\frac{\vec{v}=4 \vec{a}+5 \vec{b}}{2 \vec{u}-\vec{v}=-11 \vec{b}}$

Subtract $5 \vec{u}+3 \vec{v}=22 \vec{a}$

$$
\begin{aligned}
& \frac{5}{22} \vec{u}+\frac{3}{22} \vec{v}=\frac{22 \vec{a}}{22} \\
& \therefore \vec{a}=\frac{5}{22} \vec{u}+\frac{3}{22} \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 \vec{u}}{-11}-\frac{\vec{v}}{-11}=\frac{-11 \vec{b}}{-11} \\
\therefore & \vec{b}=-\frac{2}{11} \vec{u}+\frac{1}{11} \vec{v}
\end{aligned}
$$

HW: pg. 133 \#3, 10 to 12, 13 algebraically only

Force - that which pulls, pushes, compresses, distorts in any way

- that which changes the state of rest or state of motion in a body
- note: the magnitude of a force is measured in newtons, $\mathbf{N}$, where a 1 kg object weighs approximately 9.8 N

Vector Force - a vector equal in magnitude to the magnitude of a given force and having its direction parallel to the line of action of the force.

Equilibrant - the force that is equal in magnitude but opposite in direction to the resultant

An object will be in a state of equilibrium when the resultant of all the forces acting on it is zero. This means that the three given force vectors must form a triangle or be collinear According to the triangle inequality theorem, a triangle can only be formed if the sum of the shorter two sides is always greater than the longest side.
Note: Overall the sum of the smaller two magnitudes must be greater than or equal to the larger magnitude of the forces for equilibrium to be achieved.

Ex. 1. Which of the following sets of forces could keep an object at rest (in a state of equilibrium)?
a) $8 \mathrm{~N}, 4 \mathrm{~N}$ and 12 N
b) $3 \mathrm{~N}, 4 \mathrm{~N}$ and 12 N
c) $5 \mathrm{~N}, 7 \mathrm{~N}$ and 10 N

$$
y \text { es, } \because 8+4=12
$$

NO, $\because 3+4<12$

$$
\text { yes, } \because 5+7>10
$$

Ex. 2. The three forces $5 \mathrm{~N}, 7 \mathrm{~N}$ and 10 N are applied to an object. If the object is in a state of equilibrium, show how the forces must be arranged and calculate the angles between the lines of action of the three forces.


$$
\begin{aligned}
& \text { Find } \alpha \\
& \cos \alpha=\frac{7^{2}+10^{2}-5^{2}}{2(7)(10)} \\
& \alpha^{\prime}=28^{\circ}
\end{aligned}
$$

$\therefore$ the angle between the


Ex. 3. Find the resultant and equilibrant when forces of 48 N and 35 N act at an angle of $35^{\circ}$ to each other.


Find $|\vec{r}|$
$|\vec{r}|^{2}=48^{2}+35^{2}-2(48)(35) \cdot \cos 145^{\circ}$

$$
|\vec{r}|=79.3
$$

Find $\theta$

$$
\begin{aligned}
& \text { Find } \theta \\
& \cos \theta=\frac{48^{2}+79.3^{2}-35^{2}}{2(48)(99.3)}
\end{aligned}
$$

$$
\theta=15^{\circ}
$$

$\therefore$ the resultant $\vec{r}$, is about 79.3 N and $15^{\circ}$ to the 48 N force.
Ex. 4. A 15 kg mass is suspended from the ceiling by two cords that make angles of $30^{\circ}$ and $50^{\circ}$ with the ceiling. Find the tensions in these chords. Note: A 1 kg mass exerts a force of 9.8 N . mass


A 15 kg force exerts a force of $15 \times 9.8 \mathrm{~N}$

$$
\text { or. } 147 \mathrm{~N}
$$

Find $\left|\vec{T}_{1}\right|$

$$
\text { Find }\left|\vec{T}_{2}\right|
$$

Vector Force Diagram
$147 N$

$$
\frac{\left|\overrightarrow{T_{2}}\right|}{\sin 40^{\circ}}=\frac{147}{\sin 80^{\circ}}
$$

$$
\frac{\left|\vec{T}_{2}\right|}{\sin 60^{\circ}}=\frac{147}{\sin 80^{\circ}}
$$


$\left|T_{1}\right|=95.9$

$$
\left|\overrightarrow{\tau_{2}}\right|=129.3
$$

$\therefore$ the tensions in these
cords are about 95.9 N
and 129.3 N .

Vector Components: A vector can be broken down into horizontal and vertical components.
Ex. 1. A sled is being pulled by a force of 50 N . If the rope makes an angle of $31^{\circ}$ with the ground, find
a) the force that is pulling the sled forward (horizontal component)
b) the force that is pulling the sled upward (vertical component)

a) $\operatorname{Find}\left|\vec{F}_{h}\right|$
b) Find $\left|\vec{F}_{v}\right|$

$$
\begin{array}{ll}
\frac{\left|\vec{F}_{h}\right|}{50}=\cos 31^{\circ} & \frac{\left|\vec{F}_{0}\right|}{50}=\sin 31^{\circ} \\
\left|\vec{F}_{h}\right|=42.9 & \left|\vec{F}_{v}\right|=25.8
\end{array}
$$

$\therefore$ the force that is
pulling the sled for ward
is

$$
42.9 \mathrm{~N}
$$

$\therefore$ the force that is pulling the sled upward is 25.8 N

Ex. 2. A 20 kg trunk is resting on a ramp inclined at an angle of $15^{\circ}$. Calculate the components of the force of gravity on the trunk that are parallel and perpendicular to the ramp.

$$
20 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2}=196 \mathrm{~N}
$$

Position Diagram


Vector Force Diagram

$$
\begin{array}{cc}
F_{\text {ind }} & \text { Find } \\
\left|\vec{F}_{p}\right| & \left|\vec{F}_{n}\right| \\
\sin 15^{\circ}=\frac{\left|\vec{F}_{p}\right|}{196} & \cos 15^{\circ}=\frac{\left|\vec{F}_{n}\right|}{196} \\
\left|\vec{F}_{p}\right|=50.7 & \left|\vec{F}_{n}\right|=1893
\end{array}
$$



HW: pg. 141 \#2, 15 to 22 the trunk are 50.7 N and 189.3 N respectively.


Ex. 1. A boat with a water speed of $5 \mathrm{~km} / \mathrm{h}$ sets out to cross a 1 km wide river which flows at $2 \mathrm{~km} / \mathrm{h}$. A pub lies directly across the river on the opposite bank.
a) If the boat attempts to head straight across, how long will it take to reach the other side and how far downstream will the boat land on the opposite bank?
b) If the boat crosses the river and arrives directly at the pub on the opposite bank, in what direction must the boat steer and how long will it take to cross?

Pub akm/h
a)


$$
=\frac{1}{5}
$$

$\therefore$ it take $\frac{1}{5}$ h or 12 min to reach the other side.

$$
\begin{array}{rlrl}
d & =5 \times t \quad \text { he } 18 \frac{2}{5} k m \\
& =2 \times \frac{1}{5} & \text { or } 400 \mathrm{~m} \\
& & 24^{\circ} \\
& =\frac{2}{5} & \text { down stream, in still }
\end{array}
$$

b)


Find $\theta$

$$
\sin \theta=\frac{2}{5}
$$

$$
\theta=\sin ^{-1}\left(\frac{2}{5}\right)
$$

$$
\theta=24^{\circ}
$$

- the boat should steer $24^{\circ}$ upstream.

Find $|\vec{r}|$

$$
|\vec{r}|=\sqrt{(5)^{2}-(2)^{2}}
$$

$$
|\vec{r}|=\sqrt{2 \mid}
$$

$$
|\vec{r}| \doteq 4.6
$$

$$
t=\frac{d}{s}
$$

$$
=\frac{1}{\sqrt{21}}
$$

$$
=0.218 \mathrm{~h}
$$

$\therefore$ H will take $=0.218 \mathrm{~h}$ min. +' cross.

Ex. 2. A pilot is flying her 747 jet at $525 \mathrm{~km} / \mathrm{h}$ in the direction $\mathrm{N} 45^{\circ}$ E. She encounters a wind from $\mathrm{N} 60^{\circ} \mathrm{W}$ at $98 \mathrm{~km} / \mathrm{h}$. Find the resultant velocity.


$$
\begin{aligned}
& \text { Find }|\vec{r}| \\
& |\vec{n}|^{2}=525^{2}+98^{2}-2(525)(98) \cdot \cos 105^{\circ} \\
& |\vec{r}|=558.4
\end{aligned}
$$

Find $\theta$

$$
\begin{aligned}
\cos \theta & =\frac{525^{2}+558.4^{2}-98^{2}}{2(525)(558.4)} \\
\theta & =10^{\circ}
\end{aligned}
$$



Ex. 3. The pilot of an airplane that flies at $800 \mathrm{~km} / \mathrm{h}$ wishes to travel to a city 800 km due east. There is an $80 \mathrm{~km} / \mathrm{h}$ wind from the northeast.
a) What should the plane's heading be?
b) How long will the trip take?

a) Find $\theta$

$$
\begin{gathered}
\frac{\sin \theta}{80}=\frac{\sin 135^{\circ}}{800} \\
\theta=4^{\circ}
\end{gathered}
$$

$\therefore$ the plane should head $N 86^{\circ} E$
b)

$$
\begin{aligned}
& \text { Find }|\vec{r}| \\
& \frac{|\vec{r}|}{\sin 41^{\circ}}=\frac{800}{\sin 135^{\circ}} \quad(h)=\frac{d}{s} \\
&|\vec{r}|=742.2=\frac{800}{742.2} \\
&=1.078
\end{aligned}
$$

$\therefore$ the trip will take about 1 hour and 5 minutes.

