MCYV 4UI-Vectors Unit 7: Day 3

Date: V]/l\mu 1 / [ Section 4.2 — Vector Laws — Algebraically
Recall: In Ex. 1. from the previous day's note we learned geometrically that
AB + BC
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AC

Today we will learn how to add and subtract vectors algebraically.

Ex. 1. Add and or subtract the following vectors algebraically.
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Properties of Vector Algebra

Given a, b and ¢ are distinct non-zero vectors and k and m are real numbers, then

A. Properties of Vector Addition B. Properties of Scalar Multiplication
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3. (k+m)d= KX +ma

Distributive Law

3. a+0=

* We will prove these vector properties.



A.1.Prove: G+b=b+a (Commutative Law for Vector Addition) P

Proof: Let G and b be distinct non-zero vectors.
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A. 2. Prove: (5+5)+E=5+(5 +¢) (Associative Law for Vector Addition)
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B. 2. Prove: k(a+ b )=ka+ kb (Distributive Law for Scalar Multiplication)

Proof: Let a, b axel/& be distinct non-zero vectors.
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Ex. 2. Simplify.

D
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Ex.3. If i=2G-3b and v=4ad+5b then express a and b interms of & and V.
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HW: pg. 133 #3, 10 to 12, 13 algebraically only
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Section 4.3 — Force as a Vector - Part I

Force - that which pulls, pushes, compresses, distorts in any way
- that which changes the state of rest or state of motion in a body
- note: the magnitude of a force is measured in newtons, N, where
a 1 kg object weighs approximately 9.8 N

Vector Force — a vector equal in magnitude to the magnitude of a given force and
having its direction parallel to the line of action of the force.

Equilibrant — the force that is equal in magnitude but opposite in direction to the resultant

An object will be in a state of equilibrium when the resultant of all the forces acting

on it is zero. This means that the three given force vectors must form a triangle or be collinear

According to the triangle inequality theorem, a triangle can only be formed if

the sum of the shorter two sides is always greater than the longest side.

Note: Overall the sum of the smaller two magnitudes must be greater than or equal to the
larger magnitude of the forces for equilibrium to be achieved.

Ex. 1. Which of the following sets of forces could keep an object at rest (in a state of equilibrium)?
a) 8N, 4N and 12N b) 3N, 4N and 12N ¢) 5N, 7N and 10N
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Ex. 2. The three forces SN, 7N and 10N are applied to an object. If the object is in a state of
equilibrium, show how the forces must be arranged and calculate the angles between the
lines of action of the three forces.
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Ex. 3. Find the resultant and equilibrant when forces of 48N and 35N act at an angle of 35°
to each other.
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Ex. 4. A 15 kg mass is suspended from the ceiling by two chords that make angles of 30°and 50°
with the ceiling. Find the tensions in these chords. Note: A 1 kg mass exerts a force of 9.8 N.
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HW. pg. 141#3,4,6,7,9 to 13



MCYV 4UI-Vectors Unit 7: Day 5
Date: VY|4 /Y Section 4.3 — Force as a Vector — Part 11
\ ] '

Vector Components: A vector can be broken down into horizontal and vertical components.

Ex. 1. A sled is being pulled by a force of SON. If the rope makes an angle of 31° with the ground, find
a) the force that is pulling the sled forward (horizontal component)
b) the force that is pulling the sled upward (vertical component)
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Ex. 2. A 20 kg trunk is resting on a ramp inclined at an angle of 15°. Calculate the components of the
force of gravity on the trunk that are parallel and perpendicular to the ramp.
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Ex. 1. A boatwith a water speed of 5 km/h sets out to cross a 1 km wide river which flows at 2 km/h.
A pub lies directly across the river on the opposite bank.
a) If the boat attempts to head straight across, how long will it take to reach the other side and
how far downstream will the boat land on the opposite bank?
b) If the boat crosses the river and arrives directly at the pub on the opposite bank, in what
dlrectlon must the boat steer and how long will it take to cross?

Section 4.4 — Velocity as a Vector s|t
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Ex. 2. A pilot is flying her 747 jet at 525 km/h in the direction N45°E. She encounters a wind from

N60°W at 98 km/h. Find the resultant velocity. ol r
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Ex. 3. The pilot of an airplane that flies at 800 km/h wishes to travel to a city 800 km due east.
There is an 80 km/h wind from the northeast.

a) What should the plane’s heading be?
b) How long will the trip take?
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HW: pg. 149 #2a, 4 to 10; Review pg. 153 #5 to 15; pg. 155 #1 to 7



