MCV 4UI-Vectors Unit 8: Day 1 Date: <u>MCV 13 14</u> UNIT 8 – ALGEBRAIC VECTORS AND APPLICATIONS <u>Section 5.1 – Coordinate Systems and Algebraic Vectors</u>

A. Two-Dimensional Vectors \Re^2

Any vector in the plane can be translated so that its initial point lies at the <u>origin</u>. If the coordinates of P are (a, b), then $\overrightarrow{OP} = (a, b)$ is called the <u>position</u>. If the coordinates of P are (a, b), then $\overrightarrow{OP} = (a, b)$ is called the <u>position</u>. $\underbrace{Vc} + \underbrace{Or}_{, and a} and b$ are the <u>components</u> of the vector. $\therefore (a, b)$ means a <u>point</u> or a <u>vector</u>. Let \hat{i} and \hat{j} represent <u>whit vectors</u>. $\hat{i} = (1, D)$ and $\hat{j} = (0, 1)$ with $\vec{0} = (0, D)$. \hat{i} and \hat{j} are the <u>standard bosis vectors</u> in \Re^2 . We can represent \overrightarrow{OP} in terms of the standard basis vectors, where $\overrightarrow{OP} = \overrightarrow{a1} + \overrightarrow{b1}$. Every vector in \Re^2 can be represented algebraically or geometrically.

Ex. 1. Given $|\vec{u}| = 8$ and $\theta = 210^\circ$, express \vec{u} as an *algebraic vector* in the form: i) (a, b) ii) $a\hat{i} + b\hat{j}$

$$\begin{array}{c} P(-3)^{+} | 3 \\ 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \end{array} \qquad \begin{array}{c} P(-3)^{+} | 4 \\ -3 \\ 0 \end{array} \qquad \begin{array}{c$$

B. Three-Dimensional Vectors \Re^3

(0, 0, c)ΟP (0, b, 0) (a, 0, 0) N(a,b,o)

Any vector in the plane can be translated so that its initial point lies at the origin.

If the coordinates of P are (a, b, c), then $\overrightarrow{OP} = (a, b, c)$ is called the **position**

vector, and *a*, *b*, and *c* are the <u>COWPDNENS</u> of the vector. \therefore (*a*, *b*, *c*) means a *point* (*a*, *b*, *c*) or a *vector* (*a*, *b*, *c*).

Let \hat{i} , \hat{j} and \hat{k} represent **unit vectors** in the positive x, y and z directions respectively.

$$\hat{i} = (1, \sigma, 0), \ \hat{j} = (0, 1, 0) \text{ and } \hat{k} = (0, 0, 1) \text{ with } \vec{0} = (0, 0, 0)$$

Find $|\vec{OP}||$ $|n \triangle ONP|$, \hat{i} , \hat{j} and \hat{k} are the standard basis vectors in \Re^3 . $|n \triangle OMN_2| = |\vec{OP}|^2 = |\vec{ON}|^2 + |\vec{PN}|$ $|\vec{OP}|^2 = \vec{a} + \vec{b} + \vec{c}^2$ We can represent \vec{OP} in terms of the standard basis vectors, where $\vec{OP} = \vec{\Omega} + \vec{b} + \vec{c}$. $|\vec{OP}|^2 = \vec{a} + \vec{b} + \vec{c}^2$ We can represent \vec{OP} in terms of the standard basis vectors, where $\vec{OP} = \vec{\Omega} + \vec{b} + \vec{c}$. $|\vec{OP}|^2 = \vec{a} + \vec{b}^2$. $|\vec{OP}|^2 = \vec{a} + \vec{b} + \vec{c}^2$ Every vector in \Re^3 can be represented algebraically or geometrically.

The *direction angles* of a vector $\overrightarrow{OP} = (a, b, c)$ the angles \propto , β and γ that \overrightarrow{OP} makes with the positive x, y and z - axes respectively.

a, *b* and *c* are called the *direction numbers*.

Every vector in \Re^2 can be represented *algebraically* or *geometrically*.

- **Ex. 3.** Given vector $\vec{v} = (2, -5, 4)$,
 - a) graph \vec{v} .
 - **b)** find the magnitude of \vec{v} .
 - c) find the direction cosines.
 - d) find the direction angles.
 - e) find \hat{v}

To plot a point P(a,b,c) in space, move *a* units from the origin in the *x* direction, *b* units in the *y* direction, and then *c* units in the *z* direction. Be sure each move is made along a line parallel to the corresponding axis. Drawing a rectangular box will help you to see the three-dimensional aspect of such diagrams.

- **Ex. 4.** Given vector $\overrightarrow{OP} = 3\hat{i} + 5\hat{j} 4\hat{k}$, **a)** graph \overrightarrow{OP} . $\overrightarrow{OP} = (3,5,-4)$
 - **b)** find the magnitude of \overrightarrow{OP} .
 - c) find the direction cosines.
 - **d)** find the direction angles.
 - e) find a unit vector in the direction opposite to \overrightarrow{OP} .

I The Vector Joining Two Points

II The Magnitude of a Vector

Ex. 1. Given the points A(1,1,2), B(2,-1,3) and C(4,1,5), find:

a)
$$\overrightarrow{OA} + \overrightarrow{OB}$$

 $= (1, 1, 2) + (2, -1, 3)$
 $= (3, 0, 5)$
c) \overrightarrow{BC}
 $= \overrightarrow{OC} - \overrightarrow{OB}$
 $= (4, -12)$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-8)^{-1}$
 $= (-3)^{-1}$
 $= (-3)^{-1}$

b)
$$2\overrightarrow{OB} - 3\overrightarrow{OC}$$

= $2(2, -1, 3) - 3(4, 1, 5)$
= $(4 - 12, -2 - 3, 6 - 15)$
= $(-8, -5, -9)$

$$= \overrightarrow{OA} - \overrightarrow{OC}$$

= (1,1,2) - (4,1,5)
= (-3,0,-3)

Ex. 2. If
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$, find $|\vec{a} - \vec{b}|$.
 $\vec{a} = (2, -3, 4); \vec{b} = (3, 1, -1)$
 $\vec{a} - \vec{b} = (2, -3, 4) - (3, 1, -1)$
 $\vec{a} - \vec{b} = (-1, -4, 5)$
 $|\vec{a} - \vec{b}| = \sqrt{(-1)^2 + (-4)^2 + (5)^2}$
 $= \sqrt{42}$
 $\vec{a} - \vec{b} = \sqrt{42}$ units

Ex. 3. Given the points P(4,3,5) and Q(1,-2,5), find $|\overrightarrow{PQ}|$.

$$PQ = QQ - QP$$

$$= (1, -2, 5) - (4, 3, 5)$$

$$\therefore PQ = (-3, -5, 0)$$

$$|PQ| = \sqrt{(-3)^{2} + (-5)^{2} + (0)^{2}}$$

$$= \sqrt{34}$$

$$\therefore |PQ| = \sqrt{34} \text{ units}$$

Ex. 4. Given the points A(5,-1), B(-3,4) and C(13,-6), show that A, B and C are *collinear* using vectors.

Note: A, B and C are collinear if
$$\overrightarrow{AC}$$
 is a scalar multiple of \overrightarrow{AB} .
 $\overrightarrow{AC} = \overrightarrow{6C} - \overrightarrow{OA}$
 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
 $= (13,-6) - (5,-1)$
 $= (-3,4) - (5,-1)$
 $\overrightarrow{AC} = (8,-5)$
 $\overrightarrow{AB} = (-8,5)$
 $\overrightarrow{AC} = (-8,5)$
 $\overrightarrow{AC} = (-8,5)$
 $\overrightarrow{AC} = (-8,5)$
 $\overrightarrow{AC} = (-8,5)$

Ex. 5. If quadrilateral *ABCD* is a parallelogram with vertices A(-5,3), B(5,2) and C(7,-8), find the coordinates of *D*, *using vectors*.

Ex. 6. If \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are three edges of a *parallelepiped* where *O* is (0,0,0), *A* is (5,9,-3), *B* is (2,-1,5) and *C* is (9,3,8). Find the coordinates of the other four vertices, *D*, *E*, *F* and *G*.

HW. pg. 172 #2agij, 3ab, 4f, 5d, 6c, 8, 9c, 12, 13ad, 14ab, 15, 16

MCV 4UI-Vectors Unit 8: Day 3 Date: $M \approx 16/14$

Section 5.3 – The Dot Product of Two Vectors

A. The Dot Product in Vector Form

The *dot product* of any two vectors \vec{a} and \vec{b} is $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

where θ is the angle between the vectors.

Note: The *dot product* of two vectors is a *scalar*.

Ex. 1. Complete the following.

- a) If the angle, θ , between the vectors is *acute* then $\underline{0}^{\circ} < \theta < \underline{90}^{\circ}$ and $\vec{a} \cdot \vec{b} \geq \underline{0}$.
- **b)** If the angle, θ , between the vectors is *obtuse* then $\underline{90}^{\bullet} < \theta < \underline{100}^{\bullet}$ and $\vec{a} \cdot \vec{b} \leq \underline{0}$.
- c) If the angle, θ , between the vectors is **right** then $\theta = \underline{QD}^{\theta}$ and $\vec{a} \cdot \vec{b} = \underline{O}$.

Ex. 2. If
$$|\vec{a}| = 5$$
, $|\vec{b}| = 6$ and $\theta = 60^\circ$, then find $\vec{a} \cdot \vec{b}$.
 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$
 $= (5)(6) \cos 66^\circ$ scalar
 $= 30(1)$
 $= 15$

Ex. 3. If $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, determine each of the following:

a) $\hat{i} \cdot \hat{i}$ = (1)(1) \cos^{2} = (1)(1)(1)	d) î · ĵ = (1)(1) W≥90° = (1)(1)(0)
b) $\hat{j} \cdot \hat{j}$	$ = \bigcirc $ e) $\hat{i} \cdot \hat{k} $ $ = \bigcirc $
c) $\hat{k} \cdot \hat{k}$	$ \mathbf{f} \mathbf{j} \cdot \hat{k} $ $ \mathbf{c} \mathbf{D} $

B. The Dot Product in Component Form

Let
$$\vec{a} = (a_1, a_2, a_3)$$
 and $\vec{b} = (b_1, b_2, b_3)$
 $\vec{a} \cdot \vec{b}$
 $= (a_1, a_2, a_3) \cdot (b_1, b_2, b_3)$
 $= (a_1, b_1, a_1, b_2, (b_1, b_2, b_3) + (a_2, b_1, (b_1, b_2, b_3, (b_1, b_3, (b_1, b_2, b_3, (b_1, b_2, b_3, (b_1, b_3, (b_1,$

the *dot product* of any two vectors \vec{a} and \vec{b} in component form is $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Ex. 4. Find
$$\vec{a} \cdot \vec{b}$$
 if $\vec{a} = (1, 2, -3)$
and $\vec{b} = 2\hat{i} - 3\hat{j} + \hat{k}$.
 $\vec{a} \cdot \vec{b} = (1, 2, -3) \cdot (2, -3, -3, 1)$
 $= (1)(2) + (2)(-3) + (-3)(1)$
 $= 2 - 6 - 3$
 $= -7$
 $\vec{a} \cdot \vec{b} = -7$
Ex. 5. Determine whether or not $\vec{u} = (1, 2, 3)$
and $\vec{v} = (3, -4, -2)$ are *perpendicular*.
 $\vec{u} \cdot \vec{v} = (1, 2, 3) \cdot (3, -4, -3)$
 $= 3 - 8 - 6$
 $\vec{u} \cdot \vec{v} \neq \vec{o}$, \vec{u} and \vec{v} are not perpendicular.

Ex. 6. Find the angle θ between the vectors $\vec{a} = (2, -1, 4)$ and $\vec{b} = (-3, 1, 2)$.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

$$\cos \theta = \frac{1}{\sqrt{a} \cdot \sqrt{4}}$$

$$\vec{b} = 87^{\circ}$$

$$\vec{b} = 87^{\circ}$$

$$\vec{c} = \frac{1}{\sqrt{a} \cdot \sqrt{4}}$$

$$\vec{c} = 87^{\circ}$$

Ex. 7. For what values of p will the vectors of $\vec{a} = (1, p, 2)$ and $\vec{b} = (3, -9, 6)$ be i) collinear? $\vec{b} = \vec{k} \vec{0}$ ii) perpendicular?

$$(3,-9,6) = 3(1,p,2) \qquad \overrightarrow{a} \cdot \overrightarrow{b} = 0
(3,-9,6) = (3,3p,6) \qquad (1,p,2) \cdot (3,-9,6) = 0
3 - 9p + 12 = 0
15 - 9p = 0
15 - 9p = -15
15 - 9p = 5
15 - 9p = 5 - 9p = 5
15 - 9p = 5 -$$

Ex. 8. Find a vector *perpendicular* to

i)
$$(5,-2)$$

 $(5,-2) \cdot (2,5) = 0$
or $(5,-2) \cdot (-4,-10) = 0$
ii) $(4,-1,2)$
 $(4,-1,2) \cdot (1,2,-1) = 0$
or $(4,-1,2) \cdot (1,2,-1) = 0$

C. Properties of the Dot Product

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
 Commutative Law ***2.** $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
***3.** $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ Distributive Law **4.** $(k\vec{a}) \cdot \vec{b} = \vec{a} \cdot (k\vec{b}) = k(\vec{a} \cdot \vec{b})$ Associative Law

* We will prove these properties of the dot product by example.

Ex. 10. If \vec{a} and \vec{b} are distinct *unit vectors* and the angle between them is 120°, calculate $(2\vec{a}+3\vec{b})\cdot(4\vec{a}-5\vec{b})$.

$$= 8(\vec{a}\cdot\vec{a}) + 2(\vec{a}\cdot\vec{b}) - 15(\vec{b}\cdot\vec{b})$$

$$= 8|\vec{a}|^{2} + 2(\vec{a}\cdot\vec{b}) - 15|\vec{b}|^{2}$$

$$= 8|\vec{a}|^{2} + 2|\vec{a}||\vec{b}|\cos\theta - 15|\vec{b}|^{2}$$
Sub in $|\vec{a}|=1$, $|\vec{b}|=1$ and $\theta = 120^{\circ}$

$$= 8(1)^{2} + 2(1)(1)\cdot\cos 120^{\circ} - 15(1)^{2}$$

$$= 8 + 2(-\frac{1}{2}) - 15$$

$$= 8 - 1 - 15$$

$$= -8$$

$$(2\vec{a}+3\vec{b})\cdot(4\vec{a}-5\vec{b})=-8$$

$$178$$

HW. pg. 172 #1, 2a, 4a, 5, 6, 7b, 8d, 11, 12c, 13, 14ac, 15-18, 20