A. Two-Dimensional Vectors \mathfrak{R}^{2}

Any vector in the plane can be translated so that its initial point lies at the \qquad origin If the coordinates of P are (a, b), then $\overrightarrow{O P}=(a, b)$ is called the
 vector, and a and b are the \qquad components of the vector. $\therefore(a, b)$ means a \qquad or a \qquad vector

Let \hat{i} and \hat{j} represent \qquad unit vectors .
$\hat{i}=(1,0)$ and $\hat{j}=(0,1)$ with $\overrightarrow{0}=(0,0)$.
i and \hat{j} are the standard basis rectors in $\mathfrak{R r}^{2}$.
We can represent $\overrightarrow{O P}$ in terms of the standard basis vectors, where $\overrightarrow{O P}=\widehat{a}+\hat{b} \hat{j_{j}}$.
Every vector in \mathfrak{R}^{2} can be represented algebraically or geometrically.

Algebraic Form
Ordered pair notation: $\overrightarrow{O P}=(a, b)$ or
Unit vector notation: $\overrightarrow{O P}=a \hat{i}+b \hat{j}$
Note: $(a, b)=a \hat{i}+b \hat{j}$

Geometric Form
Magnitude: $|\overrightarrow{O P}|$, where $|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}}$
and
Direction: θ, where θ is measured counter-clockwise from the positive x-axis to the line of the vector.

Ex. 1. Given $|\vec{u}|=8$ and $\theta=210^{\circ}$, express \vec{u} as an algebraic vector in the form: i) (a, b) ii) $a \hat{i}+b \hat{j}$

$$
\begin{gathered}
\text { Find } a \\
\frac{a}{8}=-\cos 30^{\circ} \\
\frac{a}{8}=-\frac{\sqrt{3}}{2} \\
2 a=-8 \sqrt{3} \\
a \equiv-4 \sqrt{3}
\end{gathered}
$$

$P(a, b)$

$$
\begin{aligned}
& \text { Find } b \\
& \frac{b}{8}=-\sin 30^{\circ} \\
& \frac{b}{6}=-\frac{1}{2} \\
& b=-4
\end{aligned}
$$

Ex. 2. Given $\overrightarrow{O P}=(-3,4)$, express $\overrightarrow{O P}$ as a geometric vector by stating its magnitude and direction.

$$
\begin{aligned}
r a \cdot a & =\tan ^{-1}\left(+\frac{4}{3}\right) & & |\overrightarrow{O P}|=\sqrt{(-3)^{2}+(4)^{2}} \\
& =53^{\circ} & & |\overrightarrow{O P}|=5
\end{aligned}
$$

$$
\theta=127^{\circ}
$$

$$
\therefore \quad \theta=127^{\circ}:|\overrightarrow{O P}|=5
$$

B. Three-Dimensional Vectors \mathfrak{R}^{3}

Any vector in the plane can be translated so that its initial point lies at the origin.

If the coordinates of P are (a, b, c), then $\overrightarrow{O P}=(a, b, c)$ is called the position vector, and a, b, and c are the components of the vector. $\therefore(a, b, c)$ means a point (a, b, c) or a vector (a, b, c).

Let \hat{i}, \hat{j} and \hat{k} represent unit vectors in the positive x, y and z directions respectively.
$\hat{i}=(1,0,0), \hat{j}=(0,1,0)$ and $\hat{k}=(0,0,1)$ with $\overrightarrow{0}=(0,0,0)$.
Find $|\overrightarrow{O P}| \mid \quad \ln \triangle O N P \quad, \hat{i}, \hat{j}$ and \hat{k} are the standard basis vectors in \mathfrak{R}^{3}.
$\ln \triangle O M N^{2}|\overrightarrow{M N}|^{2}|\overrightarrow{O P}|^{2}=|\overrightarrow{O N}|^{2}+|\overrightarrow{P N}|$
$|\overrightarrow{O N}|^{2}=|\overrightarrow{O M}|+\left.|\overrightarrow{M N}| \overrightarrow{O P}\right|^{2}=a^{2}+b^{2}+c^{2}$ We can represent $\overrightarrow{O P}$ in terms of the standard basis vectors, where $\overrightarrow{O P}=\hat{a L}+\hat{b} \hat{j}+\hat{c} \hat{k}$ $|\overrightarrow{O N}|^{2}=a^{2}+b^{2} \therefore|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}+c^{2}}$ Every vector in \mathfrak{R}^{3} can be represented algebraically or geometrically.

the angles \propto, β and γ that $\overrightarrow{O P}$ makes
with the positive x, y and z-axes respectively.
a, b and c are called the direction numbers.

$\cos \alpha=\frac{a}{|\overrightarrow{O P}|} \quad \cos \beta=\frac{b}{|\overrightarrow{O P}|} \cos \gamma=\frac{C}{|\overrightarrow{O P}|}$

Every vector in \mathfrak{R}^{2} can be represented algebraically or geometrically.

Algebraic Form
Ordered triple notation: $\overrightarrow{O P}=(a, b, c)$
or
Unit vector notation: $\quad \overrightarrow{O P}=a \hat{i}+b \hat{j}+c \hat{k}$
Note: $(a, b, c)=a \hat{i}+b \hat{j}+c \hat{k}$

Geometric Form

Magnitude: $|\overrightarrow{O P}|$, where $|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}+c^{2}}$
and
Direction angles: α, β and γ that $\overrightarrow{O P}$ makes with the
positive x, y and z-axes respectively.

Note: A unit vector in the direction of $\overrightarrow{O P}$ is $\bar{\tau}\left(\cos ^{\alpha}, \cos \beta, \cos \right) \because$ a unit vector has a length of 1,

$$
\begin{aligned}
\widehat{O P} & =\frac{1}{|\overrightarrow{O P}|} \overrightarrow{O P} \\
& =\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}(a, b, c) \\
& =\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
\end{aligned}
$$

A plane in space that contains two of the coordinate axes is known as a coordinate plane. The plane containing the x - and y-axes, for instance, is called the $x y$-plane. The other two coordinate planes are named similarly. A point such as $(-4,0,1)$, which has a y-coordinate of 0 , lies in the $x z$-plane.

To plot a point $P(a, b, c)$ in space, move a units from the origin in the x direction, b units in the y direction, and then c units in the z direction. Be sure each move is made along a line parallel to the corresponding axis. Drawing a rectangular box will help you to see the three-dimensional aspect of such diagrams.

Ex. 3. Given vector $\vec{v}=(2,-5,4)$,
a) graph \vec{v}.
b) find the magnitude of \vec{v}.
c) find the direction cosines.
d) find the direction angles.
e) find \hat{v}

d) $\alpha=73^{\circ}$

I The Vector Joining Two Points

II The Magnitude of a Vector

In \mathfrak{R}^{2},

$$
|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}}
$$

In \mathfrak{R}^{3},

$$
|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

Ex. 1. Given the points $A(1,1,2), B(2,-1,3)$ and $C(4,1,5)$, find:

$$
\begin{aligned}
& \text { a) } \overrightarrow{O A}+\overrightarrow{O B} \\
& =(1,1,2)+(2,-1,3) \\
& =(3,0,5) \\
& \text { b) } 2 \overrightarrow{O B}-3 \overrightarrow{O C} \\
& =2(2,-1,3)-3(4,1,5) \\
& =(4-12,-2-3,6-15) \\
& =(-8,-5,-9) \\
& \text { c) } \overrightarrow{B C} \\
& =\overrightarrow{O C}-\overrightarrow{O B} \\
& =(4,1,5)-(2,-1,3) \\
& =(2,2,2) \\
& \text { d) } \overrightarrow{C A} \\
& =\overrightarrow{O A}-\overrightarrow{O C} \\
& =(1,1,2)-(4,1,5) \\
& =(-3,0,-3)
\end{aligned}
$$

Ex. 2. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$, find $|\vec{a}-\vec{b}|$.

$$
\begin{aligned}
& \vec{a}=(2,-3,4) ; \vec{b}=(3,1,-1) \\
& \vec{a}-\vec{b}=(2,-3,4)-(3,1,-1) \\
& \therefore \vec{a}-\vec{b}=(-1,-4,5) \\
&|\vec{a}-\vec{b}|=\sqrt{(-1)^{2}+(-4)^{2}+(5)^{2}} \\
&=\sqrt{42} \\
& \therefore|\vec{a}-\vec{b}|=\sqrt{42} \text { units. }
\end{aligned}
$$

Ex. 3. Given the points $P(4,3,5)$ and $Q(1,-2,5)$, find $|\overrightarrow{P Q}|$.

$$
\begin{aligned}
& \overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P} \\
&=(1,-2,5)-(4,3,5) \\
& \overrightarrow{P Q}=(-3,-5,0) \\
&|\overrightarrow{P Q}|=\sqrt{(-3)^{2}+(-5)^{2}+(0)^{2}} \\
&=\sqrt{34} \\
& \therefore|\overrightarrow{P Q}|=\sqrt{34} \text { units. }
\end{aligned}
$$

Ex. 4. Given the points $A(5,-1), B(-3,4)$ and $C(13,-6)$, show that A, B and C are collinear using vectors.
Note: A, B and C are collinear if $\overrightarrow{A C}$ is a scalar multiple of $\overrightarrow{A B}$

$$
\begin{aligned}
& \overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A} \quad \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \\
&=(13,-6)-(5,-1) \quad=(-3,4)-(5,-1) \\
& \therefore \overrightarrow{A C}=(8,-5) \\
& \because \quad \overrightarrow{A B}=(-8,5) \\
& \therefore \text { the points } A, B \text { CC } \text { are collinear. }
\end{aligned}
$$

Ex. 5. If quadrilateral $A B C D$ is a parallelogram with vertices $A(-5,3), B(5,2)$ and $C(7,-8)$, find the coordinates of D, using vectors.

Let $D(x, y)$ be the fourth vertex.

$$
\overrightarrow{A B}=\overrightarrow{D C}
$$

$$
\begin{gathered}
\overrightarrow{O B}-\overrightarrow{O A}=\overrightarrow{O C}-\overrightarrow{O D} \\
(5,2)-(-5,3)=(7,-8)-(x, y) \\
(10,-1)=(7-x,-8-y) \\
\therefore 10=7-x \quad, \quad-1=-8-y \\
x=-3 \quad, \quad y=-7
\end{gathered}
$$

\therefore the coordinate of D
are $(-3,-7)$.

Ex. 6. If $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are three edges of a parallelepiped where O is $(0,0,0), A$ is $(5,9,-3)$, B is $(2,-1,5)$ and C is $(9,3,8)$. Find the coordinates of the other four vertices, D, E, F and G.

\therefore the other four vertices are

Find D

$$
\begin{aligned}
\overrightarrow{O D} & =\overrightarrow{O B}+\overrightarrow{B D} \\
& =\overrightarrow{O B}+\overrightarrow{O C} \\
& =(2,-1,5)+(9,3,8) \\
& =(11,2,13 .)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find } E \\
& \overrightarrow{O E}=\overrightarrow{O B}+\overrightarrow{B D}+\overrightarrow{D E}
\end{aligned}
$$

$$
D(11,2,13), E(16,11,10),
$$

$$
=\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O A}
$$

$$
=(2,-1,5)+(9,3,8)+(5,9,-3)
$$

$$
=(16,11,10)
$$

$$
\begin{aligned}
& \text { Find } \vec{F} \\
& \overrightarrow{O F}=\overrightarrow{O A}+\overrightarrow{O C}
\end{aligned}
$$

Find G

$$
\overrightarrow{O G}=\overrightarrow{O A}+\overrightarrow{O B}
$$

$$
=(5,9,-3)+(9,3,8)
$$

$$
=(14,12,5)
$$

Date:
 May $r_{6} / 14$
 Section 5.3 - The Dot Product of Two Vectors

A. The Dot Product in Vector Form

The dot product of any two vectors \vec{a} and \vec{b} is

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

where θ is the angle between the vectors.

Note: The dot product of two vectors is a scalar.

Ex. 1. Complete the following.
a) If the angle, θ, between the vectors is acute then $\underline{0^{\circ}}<\theta<\underline{90^{\circ}}$ and $\vec{a} \cdot \vec{b} \geq 0$.
b) If the angle, θ, between the vectors is obtuse then $90^{\circ}<\theta<\underline{180^{\circ}}$ and $\vec{a} \cdot \vec{b}<0$.
c) If the angle, θ, between the vectors is right then $\theta=90^{\circ}$ and $\vec{a} \cdot \vec{b}=0$.

Ex. 2. If $|\vec{a}|=5,|\vec{b}|=6$ and $\theta=60^{\circ}$, then find $\vec{a} \cdot \vec{b}$.

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \theta \\
& =(5)(6) \cos 60^{\circ} \quad \text { scalar } \\
& =30\left(\frac{1}{2}\right) \quad \therefore \vec{a} \cdot \vec{b}=15 \\
& =15
\end{aligned}
$$

Ex. 3. If $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, determine each of the following:
a) $\hat{i} \cdot \hat{i}$
d) $\hat{i} \cdot \hat{j}$
$=(1)(1) \cos 0^{\circ}$
$=(1)(1) \cos 90^{\circ}$
$=(1)(1)(1)$
$=(1)(1)(0)$
$=1$
$=0$
b) $\hat{j} \cdot \hat{j}$
e) $\hat{i} \cdot \hat{k}$
$=1$
$=0$
c) $\hat{k} \cdot \hat{k}$
f) $\hat{j} \cdot \hat{k}$
$=1$
$=0$

B. The Dot Product in Component Form

Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$
$\vec{a} \cdot \vec{b}$

$$
\begin{aligned}
& =\left(a_{1}, a_{2}, a_{3}\right) \cdot\left(b_{1}, b_{2}, b_{3}\right) \\
& =\left(a_{1} \hat{i}+a_{2} \hat{j}\right) \cdot\left(a_{3} \hat{k}\right) \cdot\left(b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}\right) \\
& =a_{1} b_{1}(\hat{i} \cdot \hat{i})+a_{1} b_{2}(\hat{i} \cdot \hat{j})+a_{1} b_{3}(\hat{i} \cdot \hat{k})+a_{2} b_{1}(\hat{j} \cdot \hat{i})+a_{2} b_{2}(\hat{j} \cdot \hat{j})+a_{2} b_{3}(\hat{j} \cdot \hat{k})+a_{3} b_{1}(\hat{k} \cdot \hat{i})+a_{3} b_{2}(\hat{k} \cdot \hat{j})+a_{3} b_{3}(\hat{k} \cdot \hat{k}) \\
& =a_{1} b_{1}(1)+a_{1} b_{2}(0)+a_{1} b_{3}(0)+a_{2} b_{1}(0)+a_{2} b_{2}(1)+a_{2} b_{3}(0)+a_{3} b_{1}(৩)+a_{3} b_{2}(\mathrm{O})+a_{3} b_{3}(1) \\
& =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
\end{aligned}
$$

the dot product of any two vectors \vec{a} and \vec{b} in component form is

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Ex. 4. Find $\vec{a} \cdot \vec{b}$ if $\vec{a}=(1,2,-3)$

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(1,2,-3) \cdot(2,-3,1) \\
& =(1)(2)+(2)(-3)+(-3)(1) \\
& =2-6-3 \\
& =-7 \\
\therefore \quad & \vec{a} \cdot \vec{b}=-7
\end{aligned}
$$

Ex. 5. Determine whether or not $\vec{u}=(1,2,3)$ and $\vec{v}=(3,-4,-2)$ are perpendicular.

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =(1,2,3) \cdot(3,-4,-2) \\
& =3-8-6 \\
\because \vec{u} \cdot \vec{v} \neq 0 & =-\quad, \quad \vec{u} \text { and } \vec{v} \text { are not } \\
& \text { perpendicular. }
\end{aligned}
$$

Ex. 6. Find the angle θ between the vectors $\vec{a}=(2,-1,4)$ and $\vec{b}=(-3,1,2)$.

$$
\begin{array}{rl|r}
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta & \vec{a} \cdot \vec{b}=-6-1+8 \\
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & |r| \\
\cos \theta & =\frac{1}{\sqrt{21} \cdot \sqrt{14}} & =\sqrt{4+1+16} \\
\theta & =87^{\circ} & |\vec{b}|=\sqrt{9+1+4} \\
& =\sqrt{14}
\end{array}
$$

\therefore the angle $\theta=87^{\circ}$ between the vector is about 87°.
Ex. 7. For what values of p will the vectors of $\vec{a}=(1, p, 2)$ and $\vec{b}=(3,-9,6)$ be
i) collinear? $\vec{b}=k \vec{a}$

$$
\begin{gathered}
(3,-9,6)=3(1, p, 2) \\
(3,-9,6)=(3,3 p, 6) \\
\therefore-9=3 p \\
\therefore p=-3
\end{gathered}
$$

ii) perpendicular?

Ex. 8. Find a vector perpendicular to
i) $(5,-2)$
$(5,-2) \cdot(2,5)=0$
or $(5,-2) \cdot(-4,-10)=0$
ii) $(4,-1,2)$
i) $(5,-2) \cdot(2,-5)=0$
$(5,-2) \cdot(2,-10)=0$
i) $(5,-2) \cdot(2,-2) \cdot(2,5)=0$
or $(5,-2) \cdot(-4,-10)=0$
$(4,-1,2) \cdot(1,2,-1)=0$
or $(4,-1,2) \cdot(4,2,-7)=0$

$$
\begin{gathered}
\vec{a} \cdot \vec{b}=0 \\
(1, p, 2) \cdot(3,-9,6)=0 \\
3-9 p+12=0 \\
15-9 p=0 \\
-9 p=-15 \\
\therefore p=\frac{5}{3}
\end{gathered}
$$

C. Properties of the Dot Product

1. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a} \quad$ Commutative Law
*2. $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$
*3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
Distributive Law
2. $(k \vec{a}) \cdot \vec{b}=\vec{a} \cdot(k \vec{b})=k(\vec{a} \cdot \vec{b})$ Associative Law

* We will prove these properties of the dot product by example.

Ex. 9. If $\vec{a}=(-2,3,1), \vec{b}=(5,6,-7)$ and $\vec{c}=(3,-2,4)$, verify that
a) $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$

$$
\begin{aligned}
& \text { LS. } \\
= & \text { R.S. } \\
=(-2,3,1) \cdot(-2,3,1) & =|\vec{a}|^{2} \\
= & 4+9+1 \\
= & =\left(\sqrt{(-2)^{2}+(3)^{2}+(1)^{2}}\right)^{2} \\
& \quad \therefore \text { L.S. }=\text { R.S } \\
& =14 \\
& =\vec{a} \cdot \vec{a}=|\vec{a}|^{2}
\end{aligned}
$$

b) $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$

$$
\begin{array}{lll}
=\vec{a} \cdot(\vec{b}+\vec{c}) & & \vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} \\
=(-2,3,1) \cdot((5,6,-7)+(3,-2,4)] & & =[(-2,3,1) \cdot(5,6,-7)]+[(-2,3,1) \cdot(3,-2,4)] \\
=(-2,3,1) \cdot(8,4,-3) & & =(-10+18-7)+(-6-6+4) \\
=-16+12-3 & & =(1)+(-8) \\
=-7 & & =-7 \\
& \therefore \vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c} .
\end{array}
$$

Ex. 10. If \vec{a} and \vec{b} are distinct unit vectors and the angle between them is 120°, calculate

$$
\begin{aligned}
& (2 \vec{a}+3 \vec{b}) \cdot(4 \vec{a}-5 \vec{b}) . \\
= & 8(\vec{a} \cdot \vec{a})+2(\vec{a} \cdot \vec{b})-15(\vec{b} \cdot \vec{b}) \\
= & 8|\vec{a}|^{2}+2(\vec{a} \cdot \vec{b})-15|\vec{b}|^{2} \\
= & 8|\vec{a}|^{2}+2|\vec{a}||\vec{b}| \cos \theta-\left.|5| \vec{b}\right|^{2} \\
& 8 u b \text { in }|\vec{a}|=1,|\vec{b}|=1 \text { and } \theta=120^{\circ} \\
= & 8(1)^{2}+2(1)(1) \cdot \cos 120^{\circ}-15(1)^{2} \\
= & 8+2\left(-\frac{1}{2}\right)-15 \\
= & 8-1-15 \\
= & -8 \\
\therefore & (2 \vec{a}+3 \vec{b}) \cdot(4 \vec{a}-5 \vec{b})=-8 \\
= & 178
\end{aligned}
$$

HW. pg. 172 \#1, 2a, 4a, 5, 6, 7b, 8d, 11, 12c, 13, 14ac, 15-18, 20

