MCV 4UI-Vectors Unit 8: Day 1

Date:__

UNIT 8 – ALGEBRAIC VECTORS AND APPLICATIONS Section 5.1 – Coordinate Systems and Algebraic Vectors

A. Two-Dimensional Vectors \Re^2

Any vector in the plane can be translated so that its initial point lies at the *origin*. If the coordinates of P are (a, b), then $\overrightarrow{OP} = (a, b)$ is called the *position vector* and a and b are the *components* of the vector. $\therefore (a, b)$ means a *point* or a *vector*. Let \hat{i} and \hat{j} represent *unit vectors*.

 $\hat{i} = ($,) and $\hat{j} = ($,) with $\vec{0} = ($,).

 \hat{i} and \hat{j} are the *standard basis vectors* in \Re^2 .

We can represent \overrightarrow{OP} in terms of the *standard basis vectors*, where $\overrightarrow{OP} = _$.

Every vector in \Re^2 can be represented *algebraically* or *geometrically*.

Algebraic FormGeometric FormOrdered pair notation: $\overrightarrow{OP} = (a, b)$ Magnitude: $\left|\overrightarrow{OP}\right|$, where $\left|\overrightarrow{OP}\right| = \sqrt{a^2 + b^2}$ orandUnit vector notation: $\overrightarrow{OP} = a\hat{i} + b\hat{j}$ Direction: θ , where θ is measured counter-clockwiseNote: $(a, b) = a\hat{i} + b\hat{j}$ from the positive x-axis to the line of the vector.

Ex. 1. Given $|\vec{u}| = 8$ and $\theta = 210^\circ$, express \vec{u} as an *algebraic vector* in the form: **i**) (a, b) **ii**) $a\hat{i} + b\hat{j}$

B. Three-Dimensional Vectors \mathfrak{R}^3

Any vector in the plane can be translated so that its initial point lies at the *origin*. If the coordinates of *P* are (a, b, c), then $\overrightarrow{OP} = (a, b, c)$ is called the *position vector*, and *a*, *b*, and *c* are the *components* of the vector. $\therefore (a, b, c)$ means a *point* (a, b, c) or a *vector* (a, b, c). Let \hat{i} , \hat{j} and \hat{k} represent *unit vectors* in the positive *x*, *y* and *z* directions.

$$\hat{i} = (, ,), \hat{j} = (, ,)$$
 and $\hat{k} = (, ,)$ with $\vec{0} = (, ,)$.

 \hat{i} , \hat{j} and \hat{k} are the *standard basis vectors* in \Re^3 . We can represent \overrightarrow{OP} in terms of the *standard basis vectors*, where $\overrightarrow{OP} =$

Every vector in \Re^3 can be represented *algebraically* or *geometrically*.

Algebraic Form	Geometric Form
Ordered triple notation: $\overrightarrow{OP} = (a, b, c)$	Magnitude: $ \overrightarrow{OP} $, where $ \overrightarrow{OP} = \sqrt{a^2 + b^2 + c^2}$
or	and
Unit vector notation: $\overrightarrow{OP} = a\hat{i} + b\hat{j} + c\hat{k}$	Direction angles: α , β and γ that \overrightarrow{OP} makes with the
Note: $(a, b, c) = a\hat{i} + b\hat{i} + c\hat{k}$	positive x, y and z - axes respectively.

Note: A *unit vector* in the direction of \overrightarrow{OP} is:

 \therefore a unit vector has a length of 1,

- **Ex. 3.** Given vector $\vec{v} = (2, -5, 4)$,
 - **a**) graph \vec{v} .
 - **b**) find the magnitude of \vec{v} .
 - c) find the direction cosines.
 - **d**) find the direction angles.
 - **e**) find \hat{v}

A *plane* in space that contains *two* of the coordinate axes is known as a *coordinate plane*. The plane containing the *x*- and *y*- axes, for instance, is called the *xy*-plane. The other two coordinate planes are named similarly. A point such as (-4, 0, 1), which has a *y*-coordinate of 0, lies in the *xz*-plane.

To plot a point P(a,b,c) in space, move *a* units from the origin in the *x* direction, *b* units in the *y* direction, and then *c* units in the *z* direction. Be sure each move is made along a line parallel to the corresponding axis. Drawing a rectangular box will help you to see the three-dimensional aspect of such diagrams.

- **Ex. 4.** Given vector $\overrightarrow{OP} = 3\hat{i} + 5\hat{j} 4\hat{k}$,
 - a) graph \overrightarrow{OP} .
 - **b**) find the magnitude of \overrightarrow{OP} .
 - c) find the direction cosines.
 - **d**) find the direction angles.
 - e) find a unit vector in the direction opposite to \overrightarrow{OP} .

WORKSHEET on Direction Cosines and Angles

1. Find the angle that (2, 3, -2) makes with each of the coordinate axes.

2. Find the direction cosines of $\vec{u} = (a, b, c)$ where \vec{u} is a unit vector.

3. The vector $\vec{v} = (1, \sqrt{2}, c)$ makes an angle of 60° with the positive *z*-axis. Determine the angles that \vec{v} makes with the positive *x*-axis and the positive *y*-axis. Explain how many answers there are.

4. Determine the angle that $\vec{j} = (0,1,0)$ makes with each of the coordinate axes.

I The Vector Joining Two Points

II The Magnitude of a Vector

Ex. 1. Given the points A(1,1,2), B(2,-1,3) and C(4,1,5), find:

a)
$$\overrightarrow{OA} + \overrightarrow{OB}$$
 b) $2\overrightarrow{OB} - 3\overrightarrow{OC}$

c)
$$\overrightarrow{BC}$$
 d) \overrightarrow{CA}

Ex. 2. If $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$, find $|\vec{a} - \vec{b}|$.

Ex. 3. Given the points P(4,3,5) and Q(1,-2,5), find $\left|\overrightarrow{PQ}\right|$.

Ex. 4. Given the points A(5,-1), B(-3,4) and C(13,-6), show that A, B and C are *collinear* using vectors.

Note: *A*, *B* and *C* are *collinear* if _____ is a *scalar multiple* of _____.

Ex. 5. If quadrilateral *ABCD* is a parallelogram with vertices A(-5,3), B(5,2) and C(7,-8), find the coordinates of *D*, *using vectors*.

Ex. 6. If \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are three edges of a *parallelepiped* where O is (0,0,0), A is (5,9,-3), B is (2,-1,5) and C is (9,3,8). Find the coordinates of the other four vertices, D, E, F and G.

MCV 4UI-Vectors Unit 8: Day 3 **Date:**

Section 5.3 – The Dot Product of Two Vectors

A. The Dot Product in Vector Form

The *dot product* of any two vectors \vec{a} and \vec{b} is $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ where θ is the angle between the vectors.

Note: The *dot product* of two vectors is a *scalar*.

Ex. 1. Complete the following.

- **a**) If the angle, θ , between the vectors is *acute* then ____< θ < ____ and $\vec{a} \cdot \vec{b}$ _____.
- **b**) If the angle, θ , between the vectors is *obtuse* then _____< θ < _____ and $\vec{a} \cdot \vec{b}$ _____.
- c) If the angle, θ , between the vectors is *right* then $\theta = \underline{\qquad}$ and $\vec{a} \cdot \vec{b} \underline{\qquad}$.

Ex. 2. If $|\vec{a}| = 5$, $|\vec{b}| = 6$ and $\theta = 60^\circ$, then find $\vec{a} \cdot \vec{b}$.

Ex. 3. If $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, determine each of the following:

B. The Dot Product in Component Form

Let $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ $\vec{a} \cdot \vec{b}$ $= (a_1, a_2, a_3) \cdot (b_1, b_2, b_3)$ $= () \cdot ()$ $= a_1 b_1(\hat{i} \cdot \hat{i}) + a_1 b_2(\hat{i} \cdot \hat{j}) + a_1 b_3(\hat{i} \cdot \hat{k}) + a_2 b_1(\hat{j} \cdot \hat{i}) + a_2 b_2(\hat{j} \cdot \hat{j}) + a_2 b_3(\hat{j} \cdot \hat{k}) + a_3 b_1(\hat{k} \cdot \hat{i}) + a_3 b_2(\hat{k} \cdot \hat{j}) + a_3 b_3(\hat{k} \cdot \hat{k})$ $= a_1 b_1() + a_1 b_2() + a_1 b_3() + a_2 b_1() + a_2 b_2() + a_2 b_3() + a_3 b_1() + a_3 b_2() + a_3 b_3()$

: the *dot product* of any two vectors \vec{a} and \vec{b} in component form is $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Ex. 4. Find $\vec{a} \cdot \vec{b}$ if $\vec{a} = (1, 2, -3)$ and $\vec{b} = 2\hat{i} - 3\hat{j} + \hat{k}$. **Ex. 5.** Determine whether or not $\vec{u} = (1, 2, 3)$ and $\vec{v} = (3, -4, -2)$ are *perpendicular*.

Ex. 6. Find the angle θ between the vectors $\vec{a} = (2, -1, 4)$ and $\vec{b} = (-3, 1, 2)$.

Ex. 7. For what values of p will the vectors of $\vec{a} = (1, p, 2)$ and $\vec{b} = (3, -9, 6)$ be i) *collinear*? ii) *perpendicular*?

Ex. 8. Find a vector *perpendicular* to **i**) (5,-2)

ii) (4, -1, 2)

C. Properties of the Dot Product

1. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ ***3.** $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ Distributive Law ***2.** $\vec{a} \cdot \vec{a} = |\vec{a}|^2$ **4.** $(k\vec{a}) \cdot \vec{b} = \vec{a} \cdot (k\vec{b}) = k(\vec{a} \cdot \vec{b})$ Associative Law

* We will prove these properties of the dot product by example.

Ex. 9. If $\vec{a} = (-2, 3, 1)$, $\vec{b} = (5, 6, -7)$ and $\vec{c} = (3, -2, 4)$, verify that **a**) $\vec{a} \cdot \vec{a} = |\vec{a}|^2$

b) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

Ex. 10. If \vec{a} and \vec{b} are distinct *unit vectors* and the angle between them is 120°, calculate $(2\vec{a}+3\vec{b}) \cdot (4\vec{a}-5\vec{b})$.

Section 5.4 – The Cross Product of Two Vectors

Recall the Dot Product:

When two vectors are placed tail to tail, as shown,

•
$$\vec{a} \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$$

•
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

•
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Warm-up

A triangle has vertices A(1,2,3), B(-2,-4,-6) and C(6,2,-4). Find the measure of < A using vectors.

I. Cross Product

Ex. 1. Find a vector perpendicular to both $\vec{a} = (-3, 5, 1)$ and $\vec{b} = (2, -1, 7)$.

Ex. 2. Find a *unit vector* perpendicular to both $\vec{a} = (3, 4, -1)$ and $\vec{b} = (2, -1, 3)$.

II. Prove: $\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta$

Proof: Let $\vec{a} = (a_1, a_2, a_3)$ $\vec{b} = (b_1, b_2, b_3)$

→

The formula for *cross product* is

$$\vec{a} \times \vec{b} =$$

$$\left| \vec{a} \times \vec{b} \right| = \sqrt{(a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2}$$

$$\left| \vec{a} \times \vec{b} \right|^2 = (a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2$$

The right-hand side is expanded and then factored to give

$$\left|\vec{a} \times \vec{b}\right|^{2} = (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}$$

$$\because \left|\vec{a}\right|^{2} = , \quad \left|\vec{b}\right|^{2} = \text{and} \quad \vec{a} \cdot \vec{b} =$$

 $\therefore \left| \vec{a} \times \vec{b} \right|^2 =$

III. Properties of Cross Product

- **1.** $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ Anti-commutative Law
- **2.** $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ Distributive Law
- **3.** $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}), k \in \Re$ Associative Law

SUMMARY:

- The *cross product* $\vec{a} \times \vec{b}$ of two vectors \vec{a} and \vec{b} in \Re^3 is the vector that is perpendicular to both \vec{a} and \vec{b} .
- $\vec{a} \times \vec{b} = (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1)$
- $\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta$
- Vectors \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ form a *right-handed system* where $\vec{a} \times \vec{b}$ points in the opposite direction of $\vec{b} \times \vec{a}$.

IV. Right-handed System

 \overrightarrow{OP} and \overrightarrow{OQ} are two vectors perpendicular to \vec{a} and \vec{b} . The direction of $\vec{a} \times \vec{b}$ can be found by placing the extended fingers of your **right hand** on \vec{a} and curling them towards \vec{b} through an angle less than 180°. Your thumb points in the direction of $\vec{a} \times \vec{b}$. In this case $\vec{a} \times \vec{b} =$ _____ and is directed _____ the page.

Similarly, the direction of $\vec{b} \times \vec{a}$ can be found by placing the extended fingers of your **right hand** on \vec{b} and curling them towards \vec{a} through an angle less than 180°. Your thumb points in the direction of $\vec{b} \times \vec{a}$. In this case $\vec{b} \times \vec{a} =$ _____ and is directed _____ the page.

Ex. 3. If $|\vec{a}| = 4$, $|\vec{b}| = 10$ and the angle between \vec{a} and \vec{b} is 60°, find the *exact* value of $|\vec{a} \times \vec{b}|$.

Ex. 4. If $|\vec{u}| = 3$, $|\vec{v}| = 6$ and the angle between \vec{u} and \vec{v} is 330°, find the *exact* value of $|\vec{u} \times \vec{v}|$.

Section 5.5 – Applications of Dot and Cross Products

I. Projections: A *projection* is formed by dropping a perpendicular from an object onto a line or plane. The shadow of an object is a physical example of a projection.

The projection of one vector onto another can be pictured below.

The Vector Projection of \vec{a} onto \vec{b} is the vector \overrightarrow{ON} and the Scalar Projection of \vec{a} onto \vec{b} is the signed magnitude of the vector projection \overrightarrow{ON} .

We will develop formulas for each type of projection.

- i) Scalar Projection of \vec{a} onto \vec{b}
- ii) Vector Projection of \vec{a} onto \vec{b}

Ex. 1. Find the scalar and vector projections of $\vec{a} = (4,3)$ onto $\vec{b} = (-4,1)$.

Ex. 2. Given $\vec{a} = (1,6,3)$ and $\vec{b} = (1,4,5)$, find the vector projection of \vec{b} onto \vec{a} , and its magnitude.

Ex. 3. Graph $\vec{u} = (3, -2, 5)$ and find the vector projections of \vec{u} onto each of the coordinate axes and coordinate planes.

II. Area of a Parallelogram

Ex. 4. Calculate the *exact* area of the parallelogram with sides $\vec{u} = (-6, 4, 5)$ and $\vec{v} = (9, -6, 2)$.

Ex. 5. Find the *exact* area of the triangle with vertices P(5,2,-1), Q(1,2,-3) and R(4,1,2),

$$Volume = Area_{base} \times height$$
$$= A_{parallelogam} \times h$$
$$= \left| \vec{b} \times \vec{c} \right| h$$

Find *h*, where *h* is the *magnitude* of the *vector projection* of \vec{a} onto $\vec{b} \times \vec{c}$.

So,
$$h = \frac{\left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|}{\left| \vec{b} \times \vec{c} \right|}$$

$$\therefore V = \left| \vec{b} \times \vec{c} \right| \frac{\left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|}{\left| \vec{b} \times \vec{c} \right|} \quad or$$

$$V = \left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|$$

Section 5.5 – More Applications of Dot and Cross Products

IV. Work: In everyday life, the word *work* is applied to any form of activity that requires physical exertion or mental effort.

In physics, **work** is done whenever a force acting on an object causes a displacement of the object from one position to another.

Suppose a force \vec{F} moves an object from *O* to *A*.

 \vec{F} is the force acting on an object measured in newtons (N)

- \vec{d} is the displacement caused by the force, measured in metres (m)
- θ is the angle between the force and the displacement

W is the work done, measured in newton-metres, or joules (J)

Work is defined as the product of the distance an object has been displaced and the component of the force along the line of displacement. *Work is a scalar quantity*.

$$W = \left| \vec{d} \right| \sup_{\vec{F} \text{ ond}} W = \left| \vec{d} \right| \frac{\vec{F} \cdot \vec{d}}{\left| \vec{d} \right|}$$

 $\therefore W = \vec{F} \cdot \vec{d} \quad or \quad W = \left| \vec{F} \right\| \vec{d} \left| \cos \theta \right|$

SUMMARY OF WORK: The work done by a force is defined as the dot product.algebraic formorgeometric form $W = \vec{F} \cdot \vec{d}$ $W = \left| \vec{F} \right\| \vec{d} \right| \cos \theta$

Ex. 1. A crate on a ramp is hauled 8 m up the ramp under a constant force of 15 N, applied at an angle of 30° to the ramp. Find the *exact* work done.

Ex. 2. Find the *exact* work done by a 7-N force in moving an object from A (3, 2) to B (7, 5) when the force acts at an angle of 30° to \overrightarrow{AB} . The distance is in metres.

Ex. 3. Find the work done by a 24-N force in the direction of $\vec{v} = (1, 2, 2)$ when it moves an object from A(2, -4, 1) to B(10, 3, -1). The distance is in metres.

V. Torque: Sometimes instead of a force causing a change in position, a force causes an object to turn about a point or an axis. Examples are tightening a bolt using a wrench or applying a force to a bicycle pedal to make the crank arm rotate.

This turning effect of a force is called *torque*. *Torque* is a *vector* quantity.

The *torque* caused by a force is defined as the cross product $\vec{T} = \vec{r} \times \vec{F}$ and its magnitude is $|\vec{T}| = |\vec{r} \times \vec{F}|$ or $|\vec{T}| = |\vec{r}| |\vec{F}| \sin \theta$.

 \vec{F} is the applied force, \vec{r} is the vector determined by the lever arm acting from the axis of rotation and θ is the angle between the force and lever arm.

Note: The magnitude of torque is measured in N-m or J.

Ex. 4. A 40-N force is applied to the end of a 25 cm wrench with which it makes an angle of 105° . Calculate the magnitude of the torque about the centre of the bolt.

