Recall the Dot Product:

When two vectors are placed tail to tail, as shown,

- $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$
- $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

•
$$
\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Warm-up

A triangle has vertices $A(1, 2, 3)$, $B(-2, -4, -6)$ and $C(6, 2, -4)$. Find the measure of $< A$ using vectors.

$$
\frac{1}{6} \xrightarrow{\text{if } 1,2,3}
$$
\n
$$
\frac{1}{6} \xrightarrow{\text{if } 1,3,4}
$$
\n
$$
\frac{1}{6} \xrightarrow
$$

I. Cross Product

The cross product,
$$
\overrightarrow{a} \times \overrightarrow{b}
$$
 is a vector that is perpendicular to both \overrightarrow{a} and \overrightarrow{b} .
\n
$$
\overrightarrow{a} \times \overrightarrow{b}
$$
\nLet $\overrightarrow{a} = (a_1, a_2, a_3)$, $\overrightarrow{b} = (b_1, b_2, b_3)$ and $\overrightarrow{b} = (a_1, a_3, a_3)$.
\nSo, $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{b} \cdot \overrightarrow{v} = 0$
\n $(a_1, a_2, a_3) \cdot (x, y, z) = 0$ or $(b_1, b_2, b_3) \cdot (x, y, z) = 0$ or $(b_1, b_2, b_3) \cdot (x, y, z) = 0$ or $(b_1, b_2, b_3) \cdot (x, y, z) = 0$ or $(b_1, b_2, b_3) \cdot (x, y, z) = 0$ or $(b_1, b_2 + a_3b_2 + a_4b_3 + a_4b_4 + a_$

II. Prove: $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta$

Proof:
\nLet
$$
\vec{a} = (a_1, a_2, a_3)
$$

\n $\vec{b} = (b_1, b_2, b_3)$
\n \downarrow
\

The formula for *cross product* is

$$
\vec{a} \times \vec{b} = \left(\alpha_2 \, b_3 - a_3 \, b_2 \, \gamma \, \alpha_5 \, b_1 - a_1 \, b_3 \, \gamma \, \alpha_1 \, b_2 - a_2 \, b_1 \right)
$$
\n
$$
|\vec{a} \times \vec{b}| = \sqrt{(a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2}
$$
\n
$$
|\vec{a} \times \vec{b}|^2 = (a_2 b_3 - a_3 b_2)^2 + (a_3 b_1 - a_1 b_3)^2 + (a_1 b_2 - a_2 b_1)^2
$$

The right-hand side is expanded and then factored to give

$$
|\vec{a} \times \vec{b}|^{2} = (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2}
$$

\n
$$
\therefore |\vec{a}|^{2} \{\vec{a_{1}}^{2} + \vec{a_{2}}^{2} + \vec{a_{2}}^{2}\}\hat{b_{1}}^{2} = b_{1}^{2} + b_{2}^{2} + b_{3}^{2} \quad \text{and } \vec{a} \cdot \vec{b} = 0_{1}b_{1} + 0_{2}b_{2} + 0_{3}^{2}b_{3} \}
$$

\n
$$
\therefore |\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} + |\vec{b}|^{2} - (\vec{a} \cdot \vec{b})^{2}
$$

\n
$$
|\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} + |\vec{b}|^{2} - (|\vec{a}| + |\vec{b}|^{2})\cos{\theta}
$$

\n
$$
= |\vec{a}|^{2} + |\vec{b}|^{2} - (|\vec{a}| + |\vec{b}|^{2})\cos{\theta}
$$

\n
$$
= |\vec{a}|^{2} + |\vec{b}|^{2} - |\vec{a}|^{2} + |\vec{b}|^{2} - |\vec{a}|^{2} + |\vec{b}|^{2} \cos{\theta}
$$

\n
$$
|\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} + |\vec{b}|^{2} \sin{\theta}
$$

\n
$$
|\vec{a} \times \vec{b}| = |\vec{a}|^{2} + |\vec{b}|^{2} \sin{\theta}
$$

III. Properties of Cross Product

- **1.** $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ Anti-commutative Law
- **2.** $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ Distributive Law
	- **3.** $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}), k \in \mathbb{R}$ Associative Law

SUMMARY:

- The *cross product* $\vec{a} \times \vec{b}$ of two vectors \vec{a} and \vec{b} in \Re^3 is the vector that is perpendicular to both \vec{a} and \vec{b} .
- $\vec{a} \times \vec{b} = (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1)$
- $\vec{A} \cdot |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$
	- Vectors \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ form a *right-handed system* where $\vec{a} \times \vec{b}$ points in the $\frac{d}{dx} \cos \theta + \frac{d}{dx} \sin \theta + \frac{d$

IV. Right-handed System

Ex. 4. If $|\vec{u}| = 3$, $|\vec{v}| = 6$ and the angle between \vec{u} and \vec{v} is 330°, find the *exact* value of $|\vec{u} \times \vec{v}|$.

Section 5.5 – Applications of Dot and Cross Products

I. Projections: A *projection* is formed by dropping a perpendicular from an object onto a line or plane. The shadow of an object is a physical example of a projection.

The projection of one vector onto another can be pictured below.

The **Vector Projection** of *a* & onto *^b* & is the vector *ON* and the **Scalar Projection** of \vec{a} onto \vec{b} is the *signed magnitude* of the vector projection *ON* .

We will develop formulas for each type of projection.

i) Scalar Projection of \vec{a} onto \vec{b} **ii)** Vector Projection of \vec{a} onto \vec{b} Find 107 $\vec{ON} = \underbrace{|\vec{ON}|}_{\text{T2}} \vec{b}$ $= \underbrace{\vec{a} \cdot \vec{b}}_{\text{T2}} \hat{b}$ $\frac{|\vec{on}|}{|\vec{on}|}$ = COS θ $|\vec{M}| = |\vec{\alpha}| \cos \theta$ $=\frac{101}{\frac{Q.5}{B}}\frac{1}{6}$
= $\frac{101}{\frac{Q.5}{B}}\frac{1}{6}$ $|\vec{on}| = \frac{|\vec{a}||\vec{b}|}{\cos \theta}$ $\frac{15!}{200} = \frac{1}{2}$

Ex. 1. Find the scalar and vector projections of $\vec{a} = (4,3)$ onto $\vec{b} = (-4,1)$.

Ex. 2. Given $\vec{a} = (1,6,3)$ and $\vec{b} = (1,4,5)$, find the vector projection of \vec{b} onto \vec{a} , and its magnitude.

$$
\sqrt{P} = \frac{\vec{a} \cdot \vec{B}}{|\vec{a}|^2} = \vec{a}
$$
\n
$$
|\vec{B} \cdot \vec{a}| = \frac{|\vec{a} \cdot \vec{B}|}{|\vec{a}|^2}
$$
\n
$$
= \frac{1 + 24 + 15}{1 + 36 + 9} \quad (1, 6, 3)
$$
\n
$$
= \frac{40}{46} \quad (1, 6, 3)
$$
\n
$$
= \frac{20}{33} \quad (1, 6, 3)
$$
\n
$$
= (\frac{20}{33}, \frac{120}{33}, \frac{60}{33})
$$
\n
$$
= \frac{1 + 0\sqrt{46}}{46} \quad \frac{\sqrt{46}}{\sqrt{46}}
$$
\n
$$
= \frac{40\sqrt{46}}{46} \quad \frac{\sqrt{46}}{\sqrt{46}}
$$
\

Ex. 3. Graph $\vec{u} = (3, -2, 5)$ and find the vector projections of \vec{u} onto each of the coordinate axes and coordinate planes.

II. Area of a Parallelogram

Ex. 4. Calculate the *exact* area of the parallelogram with sides $\vec{u} = (-6, 4, 5)$ and $\vec{v} = (9, -6, 2)$.

Ex. 5. Find the *exact* area of the triangle with vertices $P(5,2,-1)$, $Q(1,2,-3)$ and $R(4,1,2)$,

$$
\frac{P(5,2,-1)}{a} \qquad A_{\text{triangl}} = \frac{1}{a} H_{\text{parallellogram}}
$$
\n
$$
R(4,1,2) \qquad A = \frac{1}{a} |\vec{\alpha} \times \vec{b}| \qquad 0 \times 3 \times 4 \times 7
$$
\n
$$
Q(1,2,-3) \qquad L = \frac{1}{a} |(0+2,6-30,-4-0)|
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n
$$
= \frac{1}{0} \cdot 6 \cdot 7
$$
\n<math display="</math>

III. Volume of a Parallelepiped

Volume = Area_{base} × height
=
$$
A_{parallellogam} \times h
$$

= $|\vec{b} \times \vec{c}|$ \hat{h}

Find *h*, where *h* is the *magnitude* of the *vector projection* of \vec{a} onto \vec{a} So, $b \times \vec{c}$ $\vec{a} \cdot (b \times \vec{c})$ $h = \frac{1}{\sqrt{h} \times c}$ $\vec{a} \cdot (\vec{b} \times \vec{c})$ \times $=\frac{\left|\vec{a}\cdot(\vec{b}\times\vec{c})\right|}{\left|\vec{a} - \vec{b}\right|}$ $(b \times \vec{c})$ $(b \times \vec{c})$ *or* $V = |\vec{a} \cdot (b \times \vec{c})|$ *b c* $V = \left| \vec{b} \times \vec{c} \right| \frac{\left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|}{\left| \vec{b} \times \vec{c} \right|}$ or $V = \left| \vec{a} \cdot (\vec{b} \times \vec{c}) \right|$ \times \cdot (b \times $\therefore V = b \times$

MCV 4UI-Vectors Unit 8: Day 6
Date: May 2a/14

Section 5.5 – More Applications of Dot and Cross Products

IV. Work: In everyday life, the word *work* is applied to any form of activity that requires physical exertion or mental effort.

 In physics, **work** is done whenever a force acting on an object causes a displacement of the object from one position to another.

- \vec{F} is the force acting on an object measured in newtons (N) \vec{i} is the displacement caused by the force, measured in metres (m)
- θ is the angle between the force and the displacement
- W is the work done, measured in newton-metres, or joules (J)

Work is defined as the product of the distance an object has been displaced and the component of the force along the line of displacement.

I

 \therefore *W* = $\vec{F} \cdot \vec{d}$ or $W = |\vec{F}| |\vec{d}| \cos \theta$

SUMMARY OF WORK: The work done by a force is defined as the dot product. **algebraic form** *or* **geometric form** $W = \vec{F} \cdot \vec{d}$ $W = |\vec{F}| |\vec{d}| \cos \theta$

Ex. 1. A crate on a ramp is hauled 8 m up the ramp under a constant force of 15 N, applied at an

Ex. 2. Find the *exact* work done by a 7-N force in moving an object from *A* (3, 2) to *B* (7, 5) when

Ex. 3. Find the work done by a 24-N force in the direction of $\vec{v} = (1,2,2)$ when it moves an object from $A(2, -4, 1)$ to $B(10, 3, -1)$. The distance is in metres.

$$
\vec{d} = \vec{AB}
$$
\n
$$
= \vec{AB} - \vec{OA}
$$
\n
$$
= (6,3,-1)-(2,-4,1)
$$
\n
$$
= 24(\frac{1}{\sqrt{7}} - \vec{7})
$$
\n
$$
= 44(\frac{1}{\sqrt{7}} - \vec{7})
$$
\n
$$
= 44 + 112 - 32
$$
\n
$$
= 144
$$
\n
$$
= 24 - 22
$$
\n
$$
= 144
$$
\n
$$
= 8(1,3,2)
$$
\n
$$
= 8(1,3,3)
$$
\n
$$
= 144
$$
\n
$$
=
$$

V. Torque: Sometimes instead of a force causing a change in position, a force causes an object to turn about a point or an axis. Examples are tightening a bolt using a wrench or applying a force to a bicycle pedal to make the crank arm rotate.

This turning effect of a force is called *torque*. *Torque* is a *vector* quantity.

The *torque* caused by a force is defined as the cross product $\vec{T} = \vec{r} \times \vec{F}$ and its magnitude is $|\vec{T}| = |\vec{r} \times \vec{F}|$ or $|\vec{T}| = |\vec{r}||\vec{F}|\sin\theta$.

 \vec{F} is the applied force, \vec{r} is the vector determined by the lever arm acting from the axis of rotation and θ is the angle between the force and lever arm.

 $=0.25m$

 $60 \text{ N} \left\langle \overrightarrow{70^\circ} \right\rangle = 5.17$

Note: The magnitude of torque is measured in N-m or J.

Ex. 4. A 40-N force is applied to the end of a 25 cm wrench with which it makes an angle of 105°. Calculate the magnitude of the torque about the centre of the bolt.

$$
|\vec{T}| = |\vec{r} \times \vec{F}|
$$

\nNote:
\n $= |\vec{r}| |\vec{F}| \sin \theta$
\nFor maximum
\nturning effect
\n $= (0.35)(40) \sin 75^\circ$
\n $= 9.7$
\n $= 9.7$
\n $= 4.7$
\

Ex. 5. A bicycle pedal is pushed by a foot with a 60-N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of torque about *P*.

$$
|\vec{r}| = 0.18 m
$$
\n
$$
|\vec{r}| = |\vec{r} \times \vec{F}|
$$
\n
$$
= |\vec{r}| |\vec{F}| \sin \theta
$$
\n
$$
= (0.18)(60) \sin 80^\circ
$$
\n
$$
= 10.6 \qquad \text{the magnitude of the about } 1.600 \text{ m}^2
$$
\n
$$
= 10.6 \qquad \text{the magnitude of the equation.}
$$
\n
$$
|\vec{r}| = 60N
$$