MCYV 4UIl-Vectors Unit 8: Day 4
Date: W]QM, a.a/ ) "( Section 5.4 — The Cross Product of Two Vectors
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Recall the Dot Product:
When two vectors are placed tail to tail, as shown,
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A triangle has vertices 4(1,2,3), B(-2,—4,—6) and C(6,2,—4).
Find the measure of < A4 using vectors.
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I. Cross Product

AP T - -
The cross product, @ xb, of two vectors @ and b in R’
is a vector that is perpendicular to both a and b .

axb
s Let @ =(a,,a,,a;), b =(b,,b,,b,) and ¥ =(x,y,z)
= be any vector perpendicular to both a and b.
= >
So, d-v=0 and b=
(a;,a5,a;)-(x,,2)=0 @ (b1,b,,b5)-(x,,2)=0 @
Solve for x, y and z.
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Ex. 1. Find a vector perpendicular to both @ =(—3,5,1) and b =(2,-1, 7). 3 | z
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Ex. 2. Find a unit vector perpendicular to both @ =(3,4,—1) and b= (2,-1,3).
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II. Prove: ‘5 X Z;‘ =|al ‘5‘ sin 0

Proof:
Let a =(a,,a,,a;) a2><&‘><a>{lz
b= (b, 8b) LINB NN,
The formula for cross product is )

axb =

[;_ (QZ l:‘s"aslsz asb‘_aJD} ) G\loz _az \

axb|=|(ab; —a;b,)’ +(ab, —ab;)’ +(ab, —ab,)’

‘c_i x [;‘2 =(a,by —ab,)” +(a;b, —a,by)* +(ab, —ab))*
The right-hand side is expanded and then factored to give
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ITI. Properties of Cross Product
1. Gxb =—(bxa) Anti-commutative Law
2. ax(b+¢)=dxb+adxc Distributive Law

3. k(@Gxb)=(kd)xb =adx(kb), k e R Associative Law



" summay: N\

e The cross product dxb of two vectors d and b in R’ is the vector that is
perpendicular to both a and b.
©dxb= (a,bs —ayb,, a;b, —a\by, a\b, —a,b,)

« [ 5| =d||p|sin 0

¥

* Vectors a, b and dxb forma right-handed system where a x b points in the
\ opposite direction of bxa . /

IV. Right-handed System

OP and @are two vectors perpendicular to @ and b .

The direction of @xb can be found by placing the extended

fingers of your right hand on @ and curling them towards b
_,  through an angle less than 180 . Your thumb points in the

9 direction of @ xb

In this case axb = O P and is directed OUC[’ O]C the page.

Similarly, the direction of bxd can be found by placing the extended

fingers of your right hand on b and curling them towards a through

an angle less than 180°. Your thumb points in the direction of bxa.
In this case b xd = @7 and is directed [,/\-ll-@ the page.

Ex.3. If |a|=4,
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Ex. 4. If [u] =3,

p| =10 and the angle between & and b is 60°, find the exact value of ‘Zz X [5‘ .
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P x3) =TT stne .
= (2)(6) sin?0 " XV
= 12 ('3\ W (S oh‘/&dfo[
=9 ‘ rd ml—o H.f oy
OV =29 yaits A

(Kx V
HW. pg. 185#2 to 7, 15b

<)



MCYV 4UI-Vectors Unit 8: Day 5
Date: m ad Al / | L[- Section 5.5 — Applications of Dot and Cross Products
' /

I. Projections: A projection is formed by dropping a perpendicular from an object onto a line or plane.
The shadow of an object is a physical example of a projection.

The projection of one vector onto another can be pictured below.

) @ o8
The Vector Projection of a onto b is the vector ON
B and
a the Scalar Projection of a onto b is the signed magnitude
B of the vector projection ON .
—
= E) N B We will develop formulas for each type of projection.
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Ex. 1. Find the scalar and vector projections of a =(4,3) onto b = (—4,1). - | T
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KSUMMAR Y OF PROJECTIONS:

Scalar Projections Vector Projections Magnitudes
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Ex. 2. Given a =(1,6,3) and b= (1,4,5) , find the vector projection of b onto a , and its magnitude.
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Ex. 3. Graph u =(3,—2,5) and find the vector projections of # onto each of the coordinate axes
and coordinate planes.
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II. Area of a Parallelogram

D C Area = base x height
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Ex. 4. Calculate the exact area of the parallelogram with sides u = (—6,4,5) and v =(9,-6,2).
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Ex. 5. Find the exact area of the triangle with vertices P(5,2,—1), O(1,2,-3) and R(4,1,2),
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III. Volume of a Parallelepiped
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/ SUMMARY OF GEOMETRIC APPLICATIONS:
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MCYV 4UI-Vectors Unit 8: Day 6

Date:  V]oy 2314
T

IV. Work: In everyday life, the word work is applied to any form of activity that requires physical
exertion or mental effort.

Section 5.5 — More Applications of Dot and Cross Products

In physics, work is done whenever a force acting on an object causes a displacement of
the object from one position to another.

Suppose a force F moves an object from O to A.

F is the force acting on an object measured in newtons (N)

d is the displacement caused by the force, measured in metres (m)
0 is the angle between the force and the displacement
» A W is the work done, measured in newton-metres, or joules (J)

d - 54 srgnto‘\

Work is defined as the product of the distance an object has been displaced and the component of
the force along the line of displacement. Work 1S @ ¢

. alor guantity .
s ye
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=F-d or W:‘ﬁucy‘cose

SUMMARY OF WORK: The work done by a force is defined as the dot product
algebraic form or

geometric form
W=F-d

= ‘FHc?‘ cos O

Ex.1. A crate on a ramp is hauled 8 m up the ramp under a constant force of 15 N, applied at an
angle of 30" to the ramp. Find the exact work done.

. ?ﬁ;%m N1 E] cos® .~ exact worl

¢ / \N’ = (15)(2) cos30”  done i<
_Ilgrl\{ > 0 - (ol 9?2({;7) Gos Nm or J°
: = (0

Ex. 2. Find the exact work done by a 7-N force in moving an object from 4 (3, 2) to B (7, 5) when
the force acts at an angle of 30 to 4B . The distance is in metres.

A =A/B w= |~ [K]Cosé
Q - 0@ -0OR - (71)(5) cos20®
50° = (1,5)-(33) = 35 E)

(%,2) c25(37

- )
16[’ ER T oxort work dovna
I$1=9 s 2592 Nomoor 7
2

L




Ex. 3. Find the work done by a 24-N force in the direction Qf v =(1,2,2) when it moves an object
from A4(2,—4,1) to B(10,3,—1). The distance is in metres.
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V. Torque: Sometimes instead of a force causing a change in position, a force causes an object to turn

about a point or an axis. Examples are tightening a bolt using a wrench or applying a force
to a bicycle pedal to make the crank arm rotate.

This turning effect of a force is called torque. Torque is a vector quantity.

r /The torque caused by a force is defined as the cross product \
v /' T =7 x F and its magnitude is ‘T" =‘F><F" or ‘f‘ :|17”13‘sin9.
F is the applied force, 7 is the vector determined by the

lever arm acting from the axis of rotation and 0 is the angle
between the force and lever arm.

\ kNote: The magnitude of torque is measured in N-m or J. /
—_— = _ _
Ex. 4. A 40-N force is applied to the end of a 25 cm wrench & If\ l =0.db m

with which it makes an angle of 105". Calculate the S
magnitude of the torque about the centre of the bolt. S —
Tl =1 P " \ P [=4on
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Ex. 5. A bicycle pedal is pushed by a foot with a 60-N force

as shown. The shaft of the pedal is 18 cm long. Find the
magnitude of torque about P.
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