Recall the Dot Product:

When two vectors are placed tail to tail, as shown,

- $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$
- $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

•
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Warm-up

A triangle has vertices A(1,2,3), B(-2,-4,-6) and C(6,2,-4). Find the measure of < A using vectors.

$$A(1,2,3)$$

I. Cross Product

The cross product,
$$a \times b$$
, of two vectors \overline{a} and \overline{b} in \Re^3
is a vector that is perpendicular to both \overline{a} and \overline{b} .
Let $a = (a_1, a_2, a_1)$, $\overline{b} = (b_1, b_2, b_3)$ and $\overline{v} = (x, y, z)$ be any vector perpendicular to both \overline{a} and \overline{b} .
So, $a \cdot \overline{v} = \underline{O}$ and $b \cdot \overline{v} = \underline{O}$
 $(a_1, a_2, a_3) \cdot (x, y, z) = 0$ (1)
Solve for x, y and z
 $a_1x + a_2y + a_3z = 0$ (1)
 $b_1x + b_2y + b_2z = 0$ (2)
Eliminate z
Eliminate z
Eliminate z
 $2 \times \delta_1$ $a_1b_2x + a_2b_3y + a_3b_3z = 0$ (2)
 $2 \times a_1$ $a_2b_3x + a_2b_3y + a_3b_3z = 0$ (2)
 $2 \times a_1$ $a_1b_3x + a_2b_3y + a_3b_3z = 0$ (2)
 $2 \times a_1$ $a_1b_3x + a_2b_3y + a_3b_3z = 0$ (2)
 $2 \times a_1$ $a_1b_3x + a_2b_3y + a_3b_3z = 0$ (2)
 $2 \times a_1$ $a_1b_3x - a_2b_1 \gamma x = (a_2b_3 - a_2b_3) \chi = (a_1b_3 - a_2b_1) \chi = (a_2b_3 - a_2b_3) \chi$
 $(a_1b_3 - a_3b_3) = (a_3b_3 - a_3b_3)$ ($a_1b_3 - a_2b_3$) $(a_1b_3 - a_2b_3) = (a_1b_3 - a_2b_3) \chi = (a_1b_3 - a_2b_3) \chi$
 $(a_1b_3 - a_2b_3) \chi = (a_2b_3 - a_3b_3) \chi = \chi(a_3b_3 - a_1b_3) \chi = \chi(a_1b_3 - a_2b_3) \chi$
 $(a_1b_3 - a_2b_3) = (a_2b_3 - a_3b_3) \chi = \chi(a_3b_3 - a_1b_3) \chi = \chi(a_1b_3 - a_2b_3) \chi$
 $(x_1 + y_1) = (a_2b_3 - a_3b_3) \chi = \chi(a_3b_3 - a_1b_3) \chi = \chi(a_1b_3 - a_2b_3) \chi$
 $(x_1 + y_1) = (a_2b_3 - a_3b_3) \chi = \chi(a_3b_3 - a_1b_3) \chi = \chi(a_1b_3 - a_2b_3) \chi$
Ex. 1. Find a vector perpendicular to both $\overline{a} = (-3, 5, 1)$ and $\overline{b} = (2, -1, 7)$.
 $a_1 + x_2 + x_3 + x_3$

II. Prove: $\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta$

•

The formula for *cross product* is

$$\vec{a} \times \vec{b} = \left(\begin{array}{c} \alpha_{2} \ b_{3} - \alpha_{3} \ b_{2} \ c_{3} \ b_{1} - \alpha_{1} \ b_{3} \ c_{3} \ b_{2} - \alpha_{2} \ b_{1} \ c_{3} \ b_{1} - \alpha_{1} \ b_{3} \ c_{3} \ b_{2} - \alpha_{2} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{2} \ c_{3} \ b_{2} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{2} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{2} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ b_{2} \ c_{3} \ b_{1} \ c_{3} \ c_{3} \ b_{1} \ c_{3} \ b_{1} \ c_{3} \ c_{3} \ c_{3} \ b_{1} \ c_{3} \ c_{3}$$

The right-hand side is expanded and then factored to give

$$\begin{aligned} \left| \vec{a} \times \vec{b} \right|^{2} &= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})(b_{1}^{2} + b_{2}^{2} + b_{3}^{2}) - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2} \\ &\therefore \left| \vec{a} \right|^{2} \neq \left| \vec{a}_{1}^{2} + a_{2}^{2} + a_{3}^{2} \right|^{2}, \quad \left| \vec{b} \right|^{2} = b_{1}^{2} + b_{2}^{2} + b_{3}^{2} \\ &\Rightarrow and \quad \vec{a} \cdot \vec{b} = 0 \\ &\Rightarrow \vec{b} \right|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} - (\vec{a} \cdot \vec{b})^{2} \\ &|\vec{a} \times \vec{b}|^{2} = |\vec{a}|^{2} |\vec{b}|^{2} - (\vec{a} \cdot \vec{b})^{2} \\ &= |\vec{a}|^{2} |\vec{b}|^{2} + (\vec{a} \cdot \vec{b})^{2} \\ &= |\vec{a}|^{2} |\vec{b}|^{2}$$

III. Properties of Cross Product

- **1.** $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$ Anti-commutative Law
- **2.** $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ Distributive Law
- **3.** $k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b}), k \in \Re$ Associative Law

SUMMARY:

- The *cross product* $\vec{a} \times \vec{b}$ of two vectors \vec{a} and \vec{b} in \Re^3 is the vector that is perpendicular to both \vec{a} and \vec{b} .
- $\vec{a} \times \vec{b} = (a_2b_3 a_3b_2, a_3b_1 a_1b_3, a_1b_2 a_2b_1)$
- $\mathbf{X} \cdot \left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta$
 - Vectors \vec{a} , \vec{b} and $\vec{a} \times \vec{b}$ form a *right-handed system* where $\vec{a} \times \vec{b}$ points in the opposite direction of $\vec{b} \times \vec{a}$.

IV. Right-handed System

Ex. 4. If $|\vec{u}| = 3$, $|\vec{v}| = 6$ and the angle between \vec{u} and \vec{v} is 330°, find the *exact* value of $|\vec{u} \times \vec{v}|$.

Section 5.5 – Applications of Dot and Cross Products

I. Projections: A *projection* is formed by dropping a perpendicular from an object onto a line or plane. The shadow of an object is a physical example of a projection.

The projection of one vector onto another can be pictured below.

đĂ The Vector Projection of \vec{a} onto \vec{b} is the vector \vec{ON} and the Scalar Projection of \vec{a} onto b is the signed magnitude of the vector projection ON.

We will develop formulas for each type of projection.

i) Scalar Projection of \vec{a} onto \vec{b} Find lon

Ex. 2. Given $\vec{a} = (1,6,3)$ and $\vec{b} = (1,4,5)$, find the vector projection of \vec{b} onto \vec{a} , and its magnitude.

$$\begin{aligned} \sqrt{P} &= \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} \quad \overrightarrow{a} \qquad \begin{vmatrix} |\overrightarrow{s}P \\ \overrightarrow{b} \circ n\overrightarrow{a} \end{vmatrix} = \frac{|\overrightarrow{a} \cdot \overrightarrow{b}|}{|\overrightarrow{a}|} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{40}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 26}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 24 + 15}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 26}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 26}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 26}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 36 + 9} \\ &= \frac{1 + 26}{1 + 36 + 9} \quad = \frac{1 + 26}{1 + 46} \\ &= \frac{1 + 26}{1 + 46} \quad = \frac{1 +$$

Ex. 3. Graph $\vec{u} = (3, -2, 5)$ and find the vector projections of \vec{u} onto each of the coordinate axes and coordinate planes.

II. Area of a Parallelogram

Ex. 4. Calculate the *exact* area of the parallelogram with sides $\vec{u} = (-6, 4, 5)$ and $\vec{v} = (9, -6, 2)$.

Ex. 5. Find the *exact* area of the triangle with vertices P(5,2,-1), Q(1,2,-3) and R(4,1,2),

$$P(5,2,-1)$$

$$A_{triangle} = \frac{1}{2} A_{parallelogram}$$

$$A_{triangle$$

III. Volume of a Parallelepiped

$$Volume = Area_{base} \times height$$
$$= A_{parallelogam} \times h$$
$$= \left| \vec{b} \times \vec{c} \right| h$$

Find *h*, where *h* is the *magnitude* of the *vector projection* of \vec{a} onto $\vec{b} \times \vec{c}$ So, $h = \frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{|\vec{b} \times \vec{c}|}$ $\therefore V = |\vec{b} \times \vec{c}| \frac{|\vec{a} \cdot (\vec{b} \times \vec{c})|}{|\vec{b} \times \vec{c}|}$ or $V = |\vec{a} \cdot (\vec{b} \times \vec{c})|$ *vector*

MCV 4UI-Vectors Unit 8: Day 6 Date: M dy 2a/14

Section 5.5 – More Applications of Dot and Cross Products

IV. Work: In everyday life, the word *work* is applied to any form of activity that requires physical exertion or mental effort.

> In physics, work is done whenever a force acting on an object causes a displacement of the object from one position to another.

- \vec{F} is the force acting on an object measured in newtons (N) \vec{d} is the displacement caused by the force, measured in metres (m) θ is the angle between the force and the displacement
- W is the work done, measured in newton-metres, or joules (J) signed.

Work is defined as the product of the distance an object has been displaced and the component of the force along the line of displacement. Work is a scalar quartity.

 $\therefore W = \vec{F} \cdot \vec{d} \quad or \quad W = \left| \vec{F} \right\| \vec{d} \left| \cos \theta \right|$

SUMMARY OF WORK: The work done by a force is defined as the dot product. algebraic form or geometric form $W = \left| \vec{F} \right\| \vec{d} \left| \cos \theta \right|$ $W = \vec{F} \cdot \vec{d}$

Ex. 1. A crate on a ramp is hauled 8 m up the ramp under a constant force of 15 N, applied at an

Ex. 2. Find the *exact* work done by a 7-N force in moving an object from A(3, 2) to B(7, 5) when the force acts at an angle of 30° to \overrightarrow{AB} . The distance is in metres.

Ex. 3. Find the work done by a 24-N force in the direction of $\vec{v} = (1, 2, 2)$ when it moves an object from A(2, -4, 1) to B(10, 3, -1). The distance is in metres.

$$\vec{d} = \vec{AB}$$

$$= \vec{OB} - \vec{OA}$$

$$= (0,3,-1) - (2,-4,5(1))$$

$$\vec{d} = (\epsilon,7,-2)$$

$$\vec{d}$$

V. Torque: Sometimes instead of a force causing a change in position, a force causes an object to turn about a point or an axis. Examples are tightening a bolt using a wrench or applying a force to a bicycle pedal to make the crank arm rotate.

This turning effect of a force is called *torque*. *Torque* is a *vector* quantity.

The *torque* caused by a force is defined as the cross product $\vec{T} = \vec{r} \times \vec{F}$ and its magnitude is $|\vec{T}| = |\vec{r} \times \vec{F}|$ or $|\vec{T}| = |\vec{r}| |\vec{F}| \sin \theta$.

 \vec{F} is the applied force, \vec{r} is the vector determined by the lever arm acting from the axis of rotation and θ is the angle between the force and lever arm.

 $= 0.25 \, \mathrm{m}$

60 N 700 1

Note: The magnitude of torque is measured in N-m or J.

Ex. 4. A 40-N force is applied to the end of a 25 cm wrench with which it makes an angle of 105° . Calculate the magnitude of the torque about the centre of the bolt.

Ex. 5. A bicycle pedal is pushed by a foot with a 60-N force as shown. The shaft of the pedal is 18 cm long. Find the magnitude of torque about *P*.

Haginitude of torque about
$$F$$
.

$$|\vec{r}| = |\vec{r} \times \vec{F}|$$

$$= |\vec{r}| |\vec{F}| \sin \theta$$

$$= (0 - 1\%) (60) \sin 80^{\circ}$$

$$= 10.6$$
Hw. pg. 193 #9bc, 10 to 18; (Pg. 197 #1 to 6) appoximately 10.6 J.