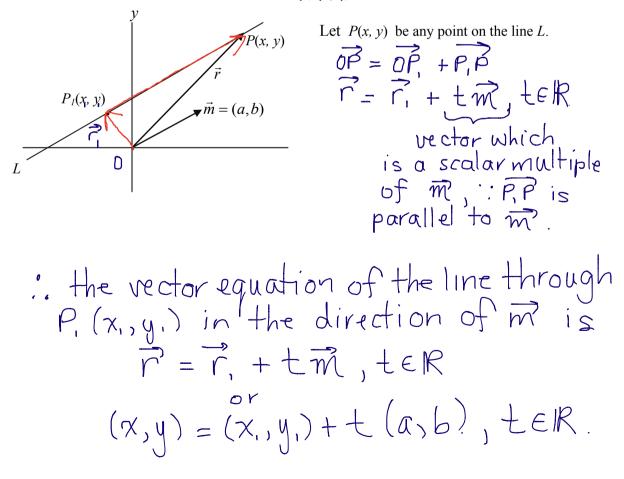


 $\vec{r} = \overrightarrow{OP}$

 $\vec{r} = (x, y)$

 $\vec{m} = (a, b)$ Note: The slope of the line is $\frac{b}{a}$.

Find the *vector equation* of the line through $P_1(x_1, y_1)$ and parallel to the direction vector \vec{m} .

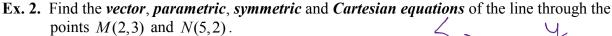


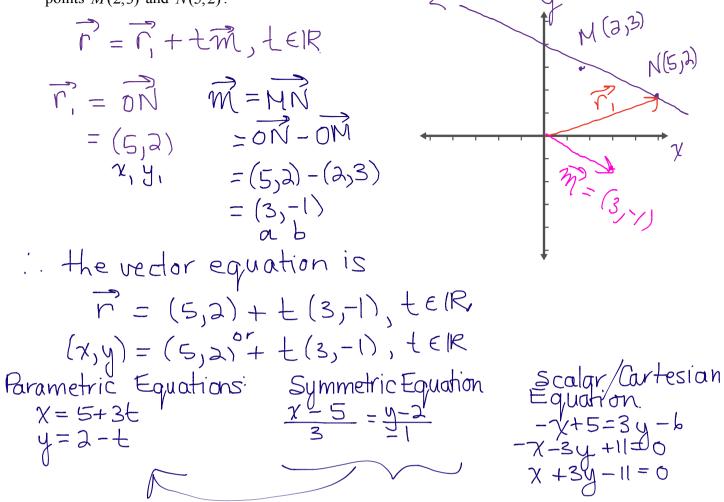
Vector Equation	Parametric Equations	Symmetric Equation
$\vec{r} = \vec{r}_1 + t\vec{m}$	$x = x_1 + at$	$\frac{x-x_1}{a} = \frac{y-y_1}{b}$
or	$y = y_1 + bt$	Scalar or Cartesian Equation
$(x, y) = (x_1, y_1) + t(a, b)$		Ax + By + C = 0
where (x, y) is the po	sition vector of any point on the line	
(x_1, y_1) is the po	sition vector of some particular point	on the line
(a,b) is a <i>dire</i>	ction vector for the line	
and $t \in \Re$ is the pa	romotor	

Ex. 1. Given a line passes through the point (-1, 2) and has (4, -5) as a direction vector find:

a) the *vector equation* and use it to find three other points on the line. **b**) the *parametric*, *symmetric* and *scalar equations*.

a) the <i>vector equation</i> and use it to find three other points on theb) the <i>parametric</i>, <i>symmetric</i> and <i>scalar equations</i>.	e line.
a) Vector equation	× p1-1,2)
$\vec{r} = \vec{r}, + t\vec{m}, t \in \mathbb{R}$	
(x,y) = (x,y,) + t(a,b)	p(7,3)
$\vec{r}_{1} = (-1,2) \neq \vec{W}_{1} = (4,-5)$	$ \qquad \qquad$
r = (-1, 2) + t (4, -5)	
$(x, y) = (-1, 2) + E(4, -5), t \in \mathbb{R}$	- 37 = (4,-5)
$if t = 2$, $(\chi, y) = (-1, 2) + 2(4, -5)$	parametric equations
$= \left(\begin{pmatrix} \gamma \\ \gamma \end{pmatrix} \right)$	$\chi = -1 + 4E'$
if $L = 3$, $(x, y) = (-1, 2) + 3(4, -5)$	y = a - 5t
= (1) 13	symmetric equation
$ \text{if } t = -3, (x,y) = (-1,2) - 3(4,-5) \\ = (-B,17) $	
. three other points on the line	$\frac{\chi+1}{4} = \frac{\chi-2}{-5}$
are $(7, -8)$, $(11, -13)$, $(-13, 17)$	Scalar equation.
	$-5\chi - 5 = 4y - 8$
	$-5\chi -4y + 3 = 0$
	5x + 4y - 3 = 0
	J





Ex. 3. Find the coordinates of the point at which the line $\vec{r} = (2, -5) + t(-1, 3), t \in R$ meets the *y*-axis.

$$\vec{r} = (a_{1}-5) + t(-1,3)$$

$$(\chi, y) = (a_{3}-5) + t(-1,3)$$

$$\chi = 2 - t$$
For y-int,

$$y = -5 + 3t$$

$$2 - t = 0$$

$$t = 2$$

$$1f \quad t = 2$$

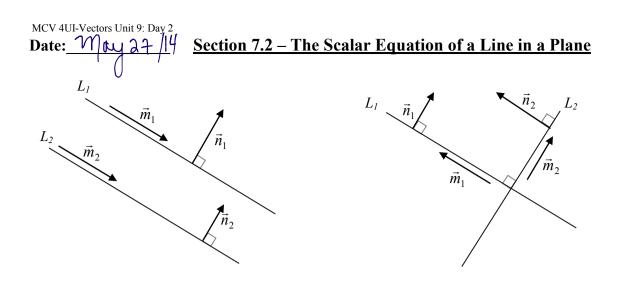
$$y = -5 + 3(2)$$

$$d = 1$$

$$\therefore \text{ the line must she y-axis at the point (0,1)}$$

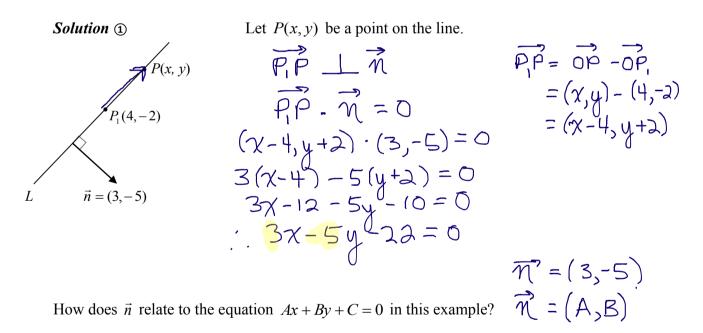
Y

HW: pg. 245 #1-7, 8bd, 9ab, 10ab, 11, 12b, 13, 14a, 16bc, 17



- If $L_1 \parallel L_2$ (L_1 is *parallel* to L_2) then
 - $\vec{m}_1 \parallel \vec{m}_2$ where $\vec{m}_1 = k \vec{m}_2$
 - $\vec{n}_1 \| \vec{n}_2$ where $\vec{n}_1 = k \vec{n}_2$

- If $L_1 \perp L_2$ (L_1 is *perpendicular* to L_2) then
 - $\vec{m}_1 \perp \vec{m}_2$ where $\vec{m}_1 \cdot \vec{m}_2 = 0$
 - $\vec{n}_1 \perp \vec{n}_2$ where $\vec{n}_1 \cdot \vec{n}_2 = 0$
- **Ex. 1.** Find the *scalar* or *Cartesian equation*, of the form Ax + By + C = 0 for the line through $P_1(4, -2)$ and perpendicular to $\vec{n} = (3, -5)$.



We can conclude that the *scalar* or *Cartesian equation* of a straight line in a plane has the form Ax + By + C = 0, where $\vec{n} = (A, B)$ is a vector perpendicular to the line.

Solution (a)
$$\widehat{\mathcal{H}} = (3, -5)$$
, $\widehat{\mathcal{H}} = (4, -2)$
 $A B$, $x y$ Find C if
Let $Ax + By + C = 0$
 $\widehat{\mathcal{H}} = (3, -5)$
 $\therefore 3x - 5y + C = 0$
 $\therefore 3x - 5y + C = 0$
 $\therefore C = -22$
 $\therefore He$ scalar equation is $3x - 5y - 22 = 0$.

SUMMARY: The scalar or Cartesian equation of a line in a plane has the form Ax + By + C = 0where (A, B) is a *normal* to the line.

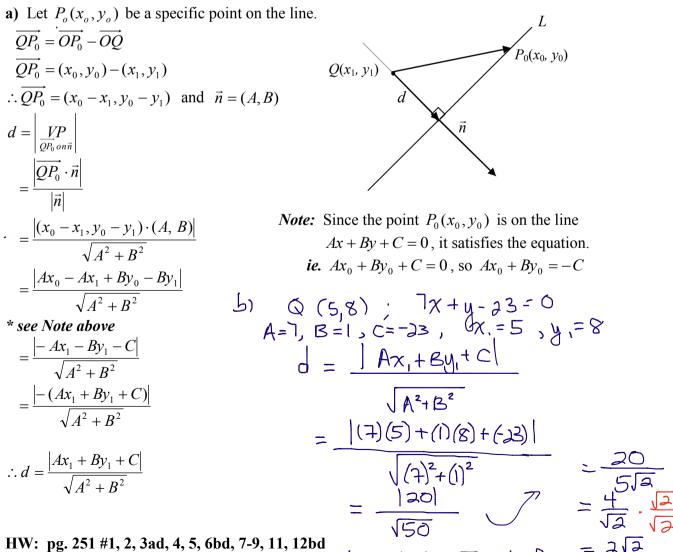
Ex. 2. Find the scalar equation of the line through $P_1(-2,3)$ and perpendicular to the

line 5x-2y+3=0. AB xyFor required line: $\overline{n} = (2,5)$, ρ , (-2,3)For given line: $\pi = (2)5$ $\pi = (2)5$

Ex. 3. a) Show that the *shortest distance* from a point $Q(x_1, y_1)$ to a line with a scalar equation

Ax + By + C = 0 is given by the formula $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{d^2 + D^2}}$

b) Use the formula to find the distance from the point Q(5,8) to the line 7x + y - 23 = 0.



the pt. is 212 units from the 1 line