Find the *vector equation* of the line through $P_1(x_1, y_1 z_1)$ and parallel to the direction vector \vec{m} .

Ex. 1. Find the *vector*, *parametric* and *symmetric equations* of the following lines: a) through the point (5, 4, -1) with direction vector (1, -3, 2)

3

b) through the point (1, 2, 3) with direction vector (3, 0, 2) $\vec{r_1} = (1, 2, 3)$; $\vec{m_1} = (3, 0, 2)$ Vector Equation: $\vec{\Gamma} = (1,2,3) + l(3,0,2), l \in \mathbb{R}$ Parametric Equations: ~-1+2+ Symmetric Equations: $\frac{\chi - 1}{2} = \frac{\chi - 3}{2}; y = 2$ x = 1+3t y = 2 z = 3+2t Note: This line is parallel to the xz-planeB $\vec{r}_1 = \vec{OA}$ $\vec{r}_1 = (4, 5, -1)$ $\vec{r}_1 = (4, 5, -1)$ $\vec{r}_2 = \vec{OB} - \vec{OA}$ Vector Equation: r = (4,5,-1) + L(1,0,0), $t \in \mathbb{R}$ - 05 - 0H = (1,5,-1) - (4,5,-1) : M = (3,0,0) use m = (1,0,0)Parametric Equations: No symmetric Equations Note: This line is parallel to the x-axis $\chi = 4 + E$ y=5 7=-1

Ex. 2. Show that the point (2, -1, 5) lies on the line with vector equation $\vec{r} = (1, 2, 3) + t (1, -3, 2), t \in \Re$.

Sub
$$(a_{1}-1,5)$$
 in for \vec{r} and solve for t .
 $(a_{1}-1,5) = (1,2,3) + t(1,-3,2)$
 $(a_{2}-1,5) - (1,2,3) = t(1,-3,2)$
 $(1,-3,2) = t(1,-3,2)$
 $\therefore t=1$
 $\therefore (2,-1,5)$ is on the line.

Ex. 3. Write a *vector equation* for the line x + 1 = -y = z - 3.

$$\frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} = \frac{z-z_{1}}{c}$$

$$\frac{x-(1)}{1} = \frac{y-0}{-1} = \frac{z-3}{1}$$

$$\vec{r}_{1}^{2} = (-1, 0, 3); \quad \vec{m} = (1, -1, 1)$$

$$\therefore \quad \vec{r}^{2} = (-1, 0, 3) + t(1, -1, 1), \quad teR \text{ is}$$

$$\text{fhe vector equation}.$$

Ex. 4. Do
$$\frac{x-5}{2} = \frac{y+4}{-5} = \frac{z+1}{3}$$
 and $\frac{x+1}{-4} = \frac{y-11}{10} = \frac{z+4}{-6}$ represent the same line? No
L, L₂
For L₁: $\overrightarrow{r} = (5, -4, -1) + \pm (2, -5, 3), \pm \in \mathbb{R}$
For L₂: $\overrightarrow{r} = (-1, 11, -4) + \oplus (-4, 10, -6), \oplus (-4, 10, -6)$
 $\overrightarrow{m_2} = k \overrightarrow{m_1}, k = -2$
 \therefore the lines are parallel
is parallel and distinct or parallel and coincident
Sub $(5, -4, -1)$ in for \overrightarrow{r} in L₂ $\stackrel{?}{=}$ solve for A
 $(5, -4, -1) = (-1, 11, -4) + \oplus (-4, 10, -6)$
 $(5, -4, -1) = (-1, 11, -4) + \oplus (-4, 10, -6)$
 $(5, -4, -1) = (-1, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -1) = (-4, -4, -6)$
 $(5, -4, -2) = (-4, -4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -2) = (-4, -6)$
 $(5, -4, -6)$
 $(5, -4, -6)$
 $(5, -4, -6)$
 $(5$

Ex. 5. a) Show that the *shortest distance* from a point Q in space to a line with a

vector equation $\vec{r} = \vec{r_1} + t \vec{m}, t \in \Re$, is given by the formula $d = \frac{|\vec{m} \times PQ|}{|\vec{m}|}$

- **b)** Use the formula to find the distance from the point Q(-1,1,6) to the line $\vec{r} = (1,2,-1) + t(0,1,1)$.
- a) In the diagram, we would like to find d.

In triangle PQR,

$$\sin \theta = \frac{d}{\left| \overrightarrow{PQ} \right|}$$
, so
 $d = \left| \overrightarrow{PQ} \right| \sin \theta$

From our earlier lessons on cross products, we know that

$$\left| \vec{m} \times \overrightarrow{PQ} \right| = \left| \vec{m} \right| \left| \overrightarrow{PQ} \right| \sin \theta.$$

If we substitute $d = \left| \overrightarrow{PQ} \right| \sin \theta$ into this formula,

$$\begin{aligned} \left| \vec{m} \times \overrightarrow{PQ} \right| &= \left| \vec{m} \right| (d) \\ \therefore d &= \frac{\left| \vec{m} \times \overrightarrow{PQ} \right|}{\left| \vec{m} \right|} \end{aligned}$$
b)
$$d &= \frac{\left| \vec{m} \times \overrightarrow{PQ} \right|}{\left| \vec{m} \right|} \\ &= \frac{\left| (o_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|}{\left| (o_{3}I_{3}I_{3}) \right|} \\ &= \frac{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|}{\left| (0_{3}I_{3}I_{3}) \right|} \\ &= \frac{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|}{\left| (0_{3}I_{3}I_{3}) \right|} \\ &= \frac{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|}{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|} \\ &= \frac{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|}{\left| (0_{3}I_{3}I_{3}) \times (-2_{3}-I_{3}T_{3}) \right|} \\ &= \sqrt{T2} \\ &= \sqrt{T2} \\ &= \sqrt{T2} \\ &= \sqrt{3}\zeta_{p} \\ &= \zeta_{p} \end{aligned}$$

$$\vec{r} = (1, 2, -1) + t(0, 1, 1)$$

$$P(1, 2, -1) = (-1, 1, 6) = \vec{m} = (0, 1, 1)$$

$$P\vec{q} = 0\vec{q} - 0\vec{P}$$

$$= (-1, 1, 6) - (1, 2, -1)$$

$$= (-2, -1, 7)$$

$$\vec{m} = (0, (, 1)) = \vec{P}\vec{q} = (-2, -1, 7)$$

$$\frac{1}{1} \times (0, 1) = (-2, -1, 7)$$

$$\vec{m} \times \vec{P}\vec{q} = (7 - (-1), -2 - 0, 0 - (-2))$$

$$= (8, -2, 2)$$

$$Q \text{ is 6 units from the line$$

a56 HW: pg.-245 #1-4, 6-14, 15bc

MCV 4UI-Vectors Unit 9: Day 4
Date:
$$\mathcal{W}$$
 \mathcal{W} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}

Warm-up:

Ex. 1. Given the scalar equation for a line is 5x - 2y + 2 = 0, find the:

- a) vector, parametric and symmetric equations for the same line.
- **b)** *acute* angle this line makes with the line x = 2-3s, y = -3+s, $s \in \Re$.
- c) *point of intersection* of this line with the line x = 2-3s, y = -3+s, $s \in \Re$.

a)
$$\vec{r} = \vec{r}_{1} + t\vec{m}_{2} t\in \mathbb{R}$$

 $: \vec{r}_{1} = (0,1); \vec{m} = (2,5)$
 $\vec{r} = (0,1) + t(2,5), t\in \mathbb{R}$
 $y = (0,1) + t(2,5), t\in \mathbb{R}$
 $\vec{r} = (0,1) + t(2,5), t\in \mathbb{R}$
 $y = (0,$

SUMMARY: Two lines in a plane can intersect in one of three possible ways.

Ex. 2. Determine whether the following pairs of lines are parallel and coincident, parallel and distinct, or neither. Find the intersection if possible.

a)
$$\overline{r} = (6, -2) + t(-3, 2)$$
 and $\overline{r} = (-1, 10) + s(6, -4)$
 $\overline{m}_{1}^{r} = (-3, 2)$ is $\overline{m}_{2}^{r} = (6, -4)$
 $\overline{m}_{1}^{r} = (-3, 2)$ is $\overline{m}_{2}^{r} = (6, -4)$
 $\overline{m}_{1}^{r} = (-1, 2, 10) + A(6, -4)$
 $\overline{m}_{1}^{r} = (-1, 2, 10) + A(6, -4)$
 $\overline{m}_{1}^{r} = (-1, 2, 10) + A(6, -4)$
 $\overline{m}_{2}^{r} = (-1, 2, 10) = A(6, -4)$
 $\overline{m}_{2}^{r} = (-1, 2, 10) = A(6, -4)$
 $\overline{m}_{2}^{r} = -(-1, 2, 10) = A(6, -4)$
 $\overline{m}_{2}^{r} = -(-2, 1) = \frac{1}{2}$
 $\overline{m}_{1}^{r} = (-2, 1) = \frac{1}{2}$
 $\overline{m}_{2}^{r} = (-3, 2) = \frac{1}{2}$
 $\overline{m}_{2}^{r} = -3$
 $\overline{m}_{2}^{r} =$

HW: pg. 263 #2, 3ab, 8; Worksheet on Equations of Lines

MCV 4UI-Vectors Unit 9: Day 5 **Date:** M ay 30/14

<u>Section 7.4 – The Intersection of Two Lines in 3-Space</u>

There is no intersection.

Examples

Find the intersection of the following pairs of lines, if any exist:

a)
$$L_1: \vec{r} = (-3,2,1) + t(-4,-6,-2)$$

 $L_2: \vec{r} = (5,-4,3) + s(2,3,1)$
 $\vec{m}_1 = (-4,-6,-2)$
 $\vec{m}_2 = (2,3,1)$
 $\vec{m}_2 = (2,3,1)$
 $\vec{m}_1 = k \vec{m}_2, k = -2$
 \therefore the lines are parallel
parallel.
 $M_1 = k \vec{m}_2, k = -2$
 \therefore the lines are parallel
and distinct and there is
ho intersection.

b)
$$L_1: \vec{r} = (4,3,7) + t(3,-1,2)$$

 $L_2: \vec{r} = (-5,6,1) + u(-6,2,-4)$
 $\vec{m}_1^2 = (3,-1,2)$
 $\vec{m}_2^2 = (-6,2,-4)$
 $(4,3,7) = (-5,6,1) + u(-6,2,-4)$
 $(4,3,7) = (-5,6,1) = u(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-4)$
 $(-6,2,-$

Lz c) $\frac{x-2}{4} = \frac{y-7}{2} = \frac{z-15}{2}$ and $\frac{x+3}{2} = \frac{y-13}{1} = \frac{z-2}{5}$ $\overline{\mathcal{M}}_{2} = (4,3,2) \in \overline{\mathcal{M}}_{2} = (3,-1,5)$: m, ZKm, . the lines interesect at a pt. or are skew For L. For Le Set parametric equations $\chi = 2 + 4t$ $\chi = -3 + 3A$ $2 + 4t = -3 + 3A \longrightarrow 4t - 3A = -5$ ſÐ y = 7+3t y = 13-A 7+3t = 13-A $\rightarrow 3t + A = 6$ z = 15+2t z = 2+5A 15+2t = 2+5A $\rightarrow 2t - 5A = -13$ Solve DES Check a=3,t=1 in @ Eliminate Dx1 42-32=-5 Forly -t 1.5 R.S. if:t=i 3x2 42-100=-26 = 3t + AX=6 $\Delta = 21$ = 3(1) + 3 subtract $\left[-2 \right] = 2$ y= 10 = 6 ·· L.S. = R.S sub A=3 in 1 2=17 4t-q=-5 7t=1 . . the lines intersect at the pt. (6,10,17) $\vec{m}_{1} = (4, 3, -1) \in \vec{m}_{2} = (1, -2, 4)$ (1,2,5) $\vec{r} = (1,2,5) + t(4,3,-1)$: L₁ m, # km, the lines intersect or are skew. $\vec{r} = (-3, -1, 3) + s(1, -2, 4)$ For Li For La Set parametric equations equal $1+4t = -3t_{A} \longrightarrow 4t_{-A} = -4$ (D) Solve $2+3t = -1-2A \longrightarrow 3t+2A = -3$ (D) $\chi = 1 + 4 + 1$ X=-3+A y = 2 + 3tz = 5 - ty=-1-20 Z=3+40 5-t=3+42 -> -t-40=-2 3-Check Solve D 20 Check s=0: E=- I in 3 Eliminate A L.S. RIS $(1) \times 2 = 8 + -20 = -8$ =-2 ()×1 3++2A=-3 = -(-1) - 4(0)117 = -11 Add = 1 1. L.S. \$ R.S. 12=-1 . there is no intersection sub t=-lin () 4(-1) - A = -4since the lines are skew? -4-2-4 - A = O A=0