Find the vector equation of the line through $P_{1}\left(x_{1}, y_{1} z_{1}\right)$ and parallel to the direction vector \vec{m}.

Let $P(x, y, z)$ be any point on the line L.

$$
\begin{aligned}
\overrightarrow{O P} & =\overrightarrow{O P_{1}}+\overrightarrow{P_{1} P} \\
\overrightarrow{O P} & =\overrightarrow{O P_{1}}+t \vec{m}, t \in \mathbb{R} \\
\vec{r} & =\overrightarrow{r_{1}}+t \vec{m}, t \in R \\
(x, y, z) & =(x, y, z, z)+t(a, b, c)
\end{aligned}
$$

SUMMARY OF EQUATIONS OF LINES IN 3-SPACE:

Vector Equation
$\vec{r}=\vec{r}_{1}+t \vec{m}$
or

$$
(x, y, z)=\left(x_{1}, y_{1}, z_{1}\right)+t(a, b, c)
$$

Parametric Equations

$$
x=x_{1}+a t
$$

$$
y=y_{1}+b t
$$

$$
z=z_{1}+c t
$$

Symmetric Equation

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

No scalar equation.
where (x, y, z) is the position vector of any point on the line $\left(x_{1}, y_{1}, z_{1}\right)$ is the position vector of some particular point on the line $(a, b, c) \quad$ is a direction vector for the line and $\quad t \in \mathfrak{R}$ is the parameter.

Ex. 1. Find the vector, parametric and symmetric equations of the following lines:
a) through the point $(5,4,-1)$ with direction vector $(1,-3,2)$

$$
\vec{r}_{1}=(5,4,-1) \quad \vec{m}=(1,-3,2)
$$

Vector Equation:

$$
\vec{r}=(5,4,-1)+t(1,-3,2), t \in \mathbb{R}
$$

Parametric Equations:

$$
\begin{aligned}
& x=5+t \\
& y=4-3 t \\
& z=-1+2 t
\end{aligned}
$$

Symmetric Equations:

$$
\frac{x-5}{1}=\frac{y-4}{-3}=\frac{z+1}{2}
$$

b) through the point $(1,2,3)$ with direction vector $(3,0,2)$

$$
\overrightarrow{r_{1}}=(1,2,3) ; \vec{m}=(3,0,2)
$$

\vec{r} Vector Equation:

$$
\vec{r}=(1,2,3)+t(3,0,2), t \in \mathbb{R}
$$

Parametric Equations:

$$
\begin{aligned}
& x=1+3 t \\
& y=2 \\
& z=3+2 t
\end{aligned}
$$

Symmetric Equations:

$$
\frac{x-1}{3}=\frac{z-3}{2} ; y=2
$$

$z=3+2 t \quad$ Note: This line is parallel to the $x z$-plane
$A \quad B$
c) through the points $(4,5,-1)$ and $(7,5,-1)$

$$
\begin{aligned}
& \vec{r}_{1}=\overrightarrow{O A} \\
& \vec{r}_{1}=(4,5,-1)
\end{aligned}
$$

$$
\begin{aligned}
\vec{m} & =\overrightarrow{A B} \\
& =\overrightarrow{O B}-\overrightarrow{O A} \\
& =(7,5,-1)-(4,5,-1)
\end{aligned}
$$

Vector Equation:

$$
\therefore \vec{m}=(3,0,0)
$$

$$
\begin{gathered}
\vec{r}=(4,5,-1)^{\prime}+t(1,0,0), \\
t \in \mathbb{R}
\end{gathered}
$$

Parametric Equations:

$$
\begin{aligned}
& x=4+t \\
& y=5 \\
& z=-1
\end{aligned}
$$

No symmetric Equations
Note: This line is parallel to the x-axis.

Ex. 2. Show that the point $(2,-1,5)$ lies on the line with vector equation $\vec{r}=(1,2,3)+t(1,-3,2), t \in \mathfrak{R}$.
sub $(2,-1,5)$ in for \vec{r} and solve fort.

$$
\begin{gathered}
(2,-1,5)=(1,2,3)+\underbrace{t(1,-3,2)} \\
(2,-1,5)-(1,2,3)=t(1,-3,2) \\
(1,-3,2)=t(1,-3,2) \\
\because t=1
\end{gathered}
$$

$\therefore(2,-1,5)$ is on the line.

Ex. 3. Write a vector equation for the line $x+1=-y=z-3$.

$$
\begin{aligned}
& \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
& \frac{x-(-1)}{1}=\frac{y-0}{-1}=\frac{z-3}{1} \\
& \vec{r}_{1}=(-1,0,3) ; \vec{m}=(1,-1,1) \\
& \therefore \vec{r}=(-1,0,3)+t(1,-1,1), t \in R \text { is }
\end{aligned}
$$

the vector equation.

Ex. 4. Do $\frac{x-5}{2}=\frac{y+4}{-5}=\frac{z+1}{3}$ and $\frac{x+1}{-4}=\frac{y-11}{10}=\frac{z+4}{-6}$ represent the same line? NO
For $L_{1}: \quad \vec{r}=(5,-4,-1)+t(2,-5,3), t \in \mathbb{R}$
For $L_{2}: \vec{r}=(-1,11,-4)+A(-4,10,-6), \Delta \in \mathbb{R}$,

$$
\begin{gathered}
\vec{m}_{1}=(2,-5,3) \dot{m_{2}}=(-4,10,-6) \\
\because \vec{m}_{2}=k \vec{m}_{1}, k=-2
\end{gathered}
$$

\therefore the lines are parallel
ie. parallel and distinct or parallel and coincident
$\operatorname{sub}(5,-4,-1)$ in for \vec{r} in L_{2} § solve for \mathcal{A}

$$
\begin{aligned}
& (5,-4,-1)=(-1,11,-4)+A(-4,10,-6) \\
& (5,-4,-1)-(-1,11,-4)=A(-4,10,-6) \\
& (6,-15,3)=A(-4,10,-6) \\
& 6=-4 s \quad \xi=-15=10 A \quad \xi \quad 3=-6 \Delta . \\
& A=-\frac{3}{2} \quad A=-\frac{3}{2} \quad A=-\frac{1}{2}
\end{aligned}
$$

$\therefore A$ is undefined or $A=\varnothing t^{\text {null }} \mathrm{set}$.
\therefore the lines are parallel and distinct.

Ex. 5. a) Show that the shortest distance from a point Q in space to a line with a vector equation $\vec{r}=\vec{r}_{1}+t \vec{m}, t \in \mathfrak{R}$, is given by the formula $d=\frac{|\vec{m} \times \overrightarrow{P Q}|}{|\vec{m}|}$.
b) Use the formula to find the distance from the point $Q(-1,1,6)$ to the line $\vec{r}=(1,2,-1)+t(0,1,1)$.
a) In the diagram, we would like to find d.

In triangle $P Q R$,

$$
\begin{gathered}
\sin \theta=\frac{d}{|\overrightarrow{P Q}|}, \text { so } \\
d=|\overrightarrow{P Q}| \sin \theta
\end{gathered}
$$

From our earlier lessons on cross products, we know that

$$
|\vec{m} \times \overrightarrow{P Q}|=|\vec{m}||\overrightarrow{P Q}| \sin \theta
$$

If we substitute $d=|\overrightarrow{P Q}| \sin \theta$ into this formula,

$$
\begin{aligned}
& |\vec{m} \times \overrightarrow{P Q}|=|\vec{m}|(d) \\
\therefore d & =\frac{|\vec{m} \times \overrightarrow{P Q}|}{|\vec{m}|}
\end{aligned}
$$

b) $d=\frac{|\vec{m} \times \overrightarrow{P Q}|}{|\vec{m}|}$

$=\frac{|(8,-2,2)|}{\sqrt{(0)^{2}+(1)^{2}+(1)^{2}}}$

$=\frac{\sqrt{72}}{\sqrt{2}}$
$=\sqrt{36}$
$=6 \quad \therefore$ point Q is 6 units from the line.
HW: pg. 245 256 $\# 1-4, ~ 6-14, ~ 15 b c$

Warm-up:
Ex. 1. Given the scalar equation for a line is $5 x-2 y+2=0$, find the:
a) vector, parametric and symmetric equations for the same line.
b) acute angle this line makes with the line $x=2-3 s, y=-3+s, s \in \mathfrak{R}$.
c) point of intersection of this line with the line $x=2-3 s, y=-3+s, s \in \mathfrak{R}$.
a) $\vec{r}=\overrightarrow{r_{1}}+t \vec{m}, t \in \mathbb{R}$

$$
\because \vec{r}_{1}=(0,1) \dot{\varepsilon_{1}} \vec{m}=(2,5)
$$

$$
\left\lvert\, \begin{aligned}
& \text { if } x=0,-2 y+2=0 \\
& \vec{n}=(5,-2) \quad-2 y=-2 \\
& \rightarrow \quad,
\end{aligned}\right.
$$

\therefore the vector equation is

$$
\vec{r}=(0,1)+t(2,5), t \in \mathbb{R}
$$

symmetric equation:
parametric equations:

$$
\begin{aligned}
& x=2 t \\
& y=1+5 t
\end{aligned}
$$

b)

$$
\begin{array}{ll}
L_{1}: \begin{array}{ll}
x=2 t & L_{2}: \\
y=1+5 t & \\
& y=-3+\infty \\
\vec{m}_{1}=(2,5) & \\
& \vec{m}_{2}=(-3,1) \\
\vec{m}_{1} \cdot \overrightarrow{m_{2}}=\left|\overrightarrow{m_{1}}\right|\left|\vec{m}_{2}\right| \cos \theta \\
(2,5) \cdot(-3,1)=\sqrt{(2)^{2}+(5)^{2}} \cdot \sqrt{(-3)^{2}+(1)^{2}} \cos \theta \\
-6+5 & =\sqrt{29} \cdot \sqrt{10} \cos \theta
\end{array}
\end{array}
$$

$$
\cos \theta=\frac{-1}{\sqrt{29} \cdot \sqrt{10}}
$$

\therefore the acute angle

$$
\theta=93^{\circ}
$$

between the lines is about 87°
c) Find the solar equation for

$$
\begin{aligned}
& x=2-3 x, \quad y=-3+\infty \\
& \frac{x-2}{-3}=\frac{y+3}{1} \\
& x-2=-3 y-9 \\
& x+3 y+7=0
\end{aligned}
$$

Solve: $\begin{aligned} 5 x-2 y & =-2 \\ x+3 y & =-7 \text { (2) } \quad \text { (a) } \quad \text { Sub } y=\frac{-33}{17}\end{aligned}$ in (2)

$$
x-\frac{99}{17}=-7
$$

$$
\begin{aligned}
& x=-\frac{119}{11}+\frac{99}{17} \\
& x=-\frac{20}{17}
\end{aligned}
$$

\therefore the pt. of intersection is $\left(-\frac{20}{17},-\frac{33}{17}\right)^{x}$.

$$
\begin{aligned}
& \text { Eliminate } \\
& \text { (D) } \times 1 \\
& 5 x-2 y=-2 \\
& \text { (3) } \times 5 \\
& \text { Subtract } \\
& \begin{array}{c}
5 x+15 y=-35 \\
-17 y=33
\end{array} \\
& \begin{aligned}
-17 y & =33 \\
y & =-33
\end{aligned} \\
& y=-\frac{33}{17}
\end{aligned}
$$

SUMMARY: Two lines in a plane can intersect in one of three possible ways.

There is no intersection.
intersecting

The intersection is a single point.
parallel and coincident

The intersection is the line.

Ex. 2. Determine whether the following pairs of lines are parallel and coincident, parallel and distinct, or neither. Find the intersection if possible.

$$
\begin{array}{ll}
L_{1} & L_{2}
\end{array}
$$

a) $\vec{r}=(6,-2)+t(-3,2)$ and $\vec{r}=(-12,10)+s(6,-4)$

$$
\begin{array}{cc}
\vec{m}_{1}=(-3,2) \dot{m_{2}}=(6,-4) & \operatorname{sub}(6,-2) \text { for } \vec{r} \text { in } L_{2} \\
\because \vec{m}_{2}=k \vec{m}_{1}, k=-2 & (6,-2)=(-12,10)+\Delta(6,-4) \\
\therefore \text { the lines are parallel } & (6,-2)-(-12,10)=s(6,-4) \\
(18,-12)=s(6,-4)
\end{array}
$$

ie. parallel \& coincident or parallel \& distinct. \therefore the lines are coincident ε_{1} the intersection is the line $L_{1}: \quad L_{2}: \quad \vec{r}=(6,-2)+t(-3,2)$.
b) $x=3-2 t, y=5+t$ and $x=5+2 s, y=3-s$

$$
\vec{m}_{1}=(-2,1) \quad \stackrel{m_{2}}{=}=(2,-1)
$$

$$
\because \vec{m}_{2}=k^{\prime} \vec{m}_{1}, k=-1 \quad 3=5+2 \Delta \quad \xi \begin{array}{lll}
5=3-\Delta \\
& -2=2 \Delta & A=-2
\end{array}
$$

\therefore the lines are parallel. $\quad-2=2 \Delta \quad A=-2$
$\because \begin{gathered}A-1 \\ \because \text { the values for a }\end{gathered}$
are different,
the lines are parallel \& distinct.
$L_{1} \quad L_{2}$ There is no intersection.
c) $\frac{x-6}{-3}=\frac{y+1}{2}$ and $\frac{x-5}{2}=\frac{y-3}{2}$

$$
\vec{m}_{1}=(-3,2) ; \vec{m}_{2}=(2,2)
$$

$\because \vec{m}_{2} \neq k \vec{m}_{1}, \therefore$ the
lines intersect at a point. $\quad 2 x+3 y=9$ (1)

\therefore the lines intersect $x=3$

Parallel \& Distinct

There is no intersection.

Parallel \& Coincident

The intersection is the line.

Intersecting

The intersection is a point.

Skew

There is no intersection.

Examples
Find the intersection of the following pairs of lines, if any exist:
a) $L_{1}: \vec{r}=(-3,2,1)+t(-4,-6,-2)$
$L_{2}: \vec{r}=(5,-4,3)+s(2,3,1)$
sub $(-3,2,1)$ in for \vec{r} in L_{2}.

$$
\begin{aligned}
& \vec{m}_{1}=(-4,-6,-2) \\
& \vec{m}_{2}=(2,3,1) \\
& \cdots \vec{m}_{1}=k \vec{m}_{2}, k=-2
\end{aligned}
$$

- the lines are parallel.

$$
\begin{gathered}
(-3,2,1)=(5,-4,3)+s(2,3,1) \\
(-3,2,1)-(5,-4,3)=\Delta(2,3,1) \\
(-8,6,-2)=A(2,3,1) \\
s=\varnothing
\end{gathered}
$$

\therefore the lines are parallel and distinct and there is no intersection.
b)

$$
\begin{array}{lc}
L_{1}: \vec{r}=(4,3,7)+t(3,-1,2) & \text { Sub }(4,3,7) \text { in for } \vec{r} \text { in } L_{2} \\
L_{2}: \vec{r}=(-5,6,1)+u(-6,2,-4) & (4,3,7)=(-5,6,1)+\mu(-6,2,-4) \\
\vec{m}_{1}=(3,-1,2) & (4,3,7)-(-5,6,1)=\mu(-6,2,-4) \\
\vec{m}_{2}=(-6,2,-4) & (9,-3,6)=\mu(-6,2,-4) \\
\because \vec{m}_{2}=k \vec{m}_{1}, k=-2 & -6 \mu=9 \quad 2 \mu=-3,-4 \mu=6 \\
\therefore \text { the lines are } & \mu=-\frac{3}{2} \quad \mu=-\frac{3}{2} \quad \mu=-\frac{3}{2} \\
\text { parallel. } & \therefore \mu=-\frac{3}{2}
\end{array}
$$

\therefore the lines are parallel and coincident. The intersection is the line $\vec{r}=(4,3,7)+t(3,-1,2)$.

$$
L_{1} \quad L_{2}
$$

c) $\frac{x-2}{4}=\frac{y-7}{3}=\frac{z-15}{2}$ and $\frac{x+3}{3}=\frac{y-13}{-1}=\frac{z-2}{5}$

$$
\begin{gathered}
\vec{m}_{1}=(4,3,2): \vec{m}_{2}=(3,-1,5) \\
\because \vec{m}_{2} \neq k \vec{m}_{1} \ldots \text { the lines }
\end{gathered}
$$

interesect at a pt. or are skaw.
For L_{1} For L_{2}
Set parametric equations

$$
\begin{array}{ll}
x=2+4 t & x=-3+3 \Delta \\
y=7+3 t & y=13-A \\
z=15+2 t & z=2+5 \Delta
\end{array}
$$

$$
2+4 t=-3+3 \Delta \rightarrow 4 t-3 \Delta=-5
$$

$$
7+3 t=13-\alpha \longrightarrow 3 t+s=6
$$

Solve (1) (3)
Eliminate $(1) \times 1 \quad 4 t-3 A=-5$

$$
\text { (3) } \times 2 \quad 4 t-10 \Delta=-26
$$

subtract $\begin{aligned} & 7 \Delta=21 \\ & \Delta=3\end{aligned}$
$\begin{aligned} \\ \text { sub } A=3 \text { in }(1) \\ 4 t-a=-5\end{aligned} \quad t=1$

$$
4 t^{5}=4
$$

For L_{1}
if $. t=1$
$x=6$
$y=10$
$z=17$
$\vec{M}_{1}=(4,3,-1) \dot{m_{1}}=(1,-2,4)$
$\because \vec{M}_{2} \neq k \vec{m}_{2}$ at the pt. (6,
the lines intersect or
are skew.

$$
\left.\begin{array}{lll}
\quad \text { For } L_{1} & \text { For } L_{2} & \text { Set parametric equations equal } \\
x=1+4 t & x=-3+s & 1+4 t=-3+\Delta \rightarrow 4 t-\Delta=-4 \\
y=2+3 t & y=-1-2 \Delta & 2+3 t=-1-2 \Delta \rightarrow 3 t+2 \Delta=-3 \\
z=5-t & z=3+4 s & 5-t=3+4 \Delta \rightarrow-t-4 \Delta=-2
\end{array}\right\} \text { (3) } \leftarrow \text { Check }
$$

Solve (1) ह்(2)
Eliminates
(1) $\times 2 \quad 8 t-2 \Delta=-8$
(2) $\times 1 \quad 3 t+2 \Delta=-3$

Add

$$
\begin{aligned}
& 11 t=-11 \\
& t=-1
\end{aligned}
$$

$$
\begin{gathered}
4(-1)-A=-4 \\
-4-A=-4 \\
-A=0 \\
A=0
\end{gathered}
$$

Check $A=3, t=1$ in (2)

$$
\begin{array}{rll}
& \text { L.S } & \text { RS. } \\
= & 3 t+A \\
= & 3(1)+3 & \\
= & L & \ddots
\end{array} \quad \text { LS. }=\text { RS. } .
$$

\therefore the lines intersect at the pt. $(6,10,17)$.

$$
\begin{aligned}
\vec{r} & =(1,2,5)+t(4,3,-1): \mathrm{L}_{1} \\
\vec{r} & =(-3,-1,3)+s(1,-2,4): \mathrm{L}_{2}
\end{aligned}
$$

check $s=0$ '. $t=-1$ in (3)
LIS. RS.

$$
=-t-4 A=-2
$$

$$
=-(-1)-4(0)
$$

$$
=1
$$

sub $t=-1$ in (1)

$$
\because \text { LS. } \neq \text { R.S. }
$$

\therefore there is no intersection since the lines are skew.

HW: pg. 263 \#1, 3cd, 4-7, 11; Review pg. 266 \#1-15

