What Is Calculus?

Two simple geometric problems originally led to the development of what is now called calculus. Both problems can be stated in terms of the graph of a function $y=f(x)$.

- The problem of tangents: What is the value of the slope of the tangent to the graph of a function at a given point P ?
- The problem of areas: What is the area under a graph of a function $y=f(x)$ between $x=a$ and $x=b$?

REVIEW: Secant Lines and Tangent Lines

The tangent line touches the curve at one point, and is the straight line that most resembles the graph near that point.
 Its slope tells how steep the graph is at the point of tangency.

The secant line passes through more than one point on the curve.

$$
m_{\sec a n t}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Ex. 1. Draw an approximate tangent for each curve at point P.
a.

b.

d.

e.

c.

f.

GOAL: Develop a method for determining the slope of a tangent at a given point on a curve.
To find the equation of a tangent to a curve at a given point, we first need to know the slope of the tangent. What can we do when we only have one point?
We proceed as follows:
Consider a curve $y=f(x)$ and a point P that lies on the curve. Now consider another point Q on the curve. The line joining P to Q is called a secant. Think of Q as a moving point that slides along the curve towards P, so that the slope of the secant $P Q$ becomes a progressively better estimate of the slope of the tangent at P.

This suggests the following definition of the slope of the tangent:

The slope of the tangent to a curve at a point P is the limiting slope of the secant $P Q$ as the point Q slides along the curve towards P. In other words, the slope of the tangent is said to be the limit of the slope of the secant as Q approaches P along the curve

The Slope of a Tangent at an Arbitrary Point

We can now generalize the method used above to derive a formula for the slope of the tangent to the graph of any function $y=f(x)$.

$$
\mid y
$$

$$
\begin{aligned}
& \text { For secant } P Q \text {, } \\
& m_{P Q}=\frac{f(a+h)-f(a)}{a+h-a} \\
& m_{P Q}=\frac{f(a+h)-f(a)}{h} \\
& \text { For tangent } \\
& \begin{array}{l}
\text { at } P, Q \rightarrow P^{+}, \\
\text {so } h \rightarrow 0
\end{array} \\
& m_{t}=\lim _{h \rightarrow 0}^{0} m \\
& m_{t}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& \text { "The limit ash } \rightarrow 0 \text { of ..." }
\end{aligned}
$$

The slope of the tangent to the graph $y=f(x)$ at a specific point $P(a, f(a))$ is:

$$
m_{t}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Ex. 2. Find the slope of the tangent to each curve at the point whose x-value is given. Illustrate your solution graphically.
a) $f(x)=-x^{2}$, at $(2,-4)$

$$
\begin{aligned}
m_{t} & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(2+h)^{2}-(-4)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-(2+h)(2+h)+4}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4-4 h-h^{2}+4}{h} \\
& =\lim _{h \rightarrow 0} \frac{-4 h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(-4-h)^{k} \text { brackets } \\
& =-4
\end{aligned}
$$

$$
\therefore m_{t}=-4 \text { at }(2,-4)
$$

b) $y=2 \sqrt{x+4}$, at x
et $f(x)=2 \sqrt{x+4}$

$$
m_{t}=\lim _{h \rightarrow 0} \frac{f(-3+h)-f(-3)}{h}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{2 \sqrt{(-3+h)+4}-(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 \sqrt{1+h}-2}{h} \rightarrow \frac{2 \sqrt{1+h}+2}{2 \sqrt{1+h}+2}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{4(1+h)-4}{h(2 \sqrt{1+h}+2)}
$$

$$
=\lim _{h \rightarrow 0} \frac{t+4 h-4}{h(2 \sqrt{1+h}+2)}
$$

$$
=\lim _{h \rightarrow 0} \frac{4 h}{h(2 \sqrt{1+h}+2)}
$$

$$
=\lim _{h \rightarrow 0} \frac{4}{2 \sqrt{1+h}+2}
$$

$$
=\frac{4}{4}
$$

$$
=1
$$

c) $y=\frac{1}{x}$, at $x=1$

Let $f(x)=\frac{1}{x}$

$$
\begin{aligned}
& m_{t}=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{1-1-h)}{h(1+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(1+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{1+h} \\
& =-1 \\
& \quad \therefore m_{t}=-1 \text { at } x=1 .
\end{aligned}
$$

$$
\begin{aligned}
& *(h-2)(h-2)(h-2) \\
= & (h-2)\left(h^{2}-4 h+4\right) \\
= & h^{3}-6 h^{2}+12 h-8
\end{aligned}
$$

Ex. 3. Find the slope and equation of the tangent to $y=x^{3}-4 x$, at $x=-2$.

$$
\begin{aligned}
& y=x^{3}-4 x \\
& y=x\left(x^{2}-4\right) \\
& y=x(x-2)(x+2) \\
& x \text {-4 ns are } 0,2 \\
& \text { all single }
\end{aligned}
$$

Let $f(x)=x^{3}-4 x$

$$
\begin{aligned}
& m_{t}=\lim _{h \rightarrow 0} \frac{f(-2+h)-f(-2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(h-2)^{3}-4(h-2)-(0)}{h} * \begin{array}{cc|c}
-1 & 3 \\
0 & 0 \\
1 & -3 \\
3 & 0 \\
3 & 15
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}-6 h^{2}+12 h-8-4 h+8}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{3}-6 h^{2}+8 h}{h} \\
& =\lim _{h \rightarrow 0}\left(h^{2}-6 h+8\right) \\
& =(0)^{2}-6(0)+8 \\
& =8
\end{aligned}
$$

For tangent

$$
m_{t}=8 ; P(-2,0) ; b=16
$$

Find b^{t} :

$$
\begin{aligned}
y & =m x+b \\
0 & =8(-2)+b \\
0 & =-16+b \\
16 & =b
\end{aligned}
$$

the slope of the tangent is 8 and the equation is $y=8 x+16$

Recall:

The slope of the tangent to the graph $y=f(x)$ at a specific point $P(a, f(a))$ is:

$$
m_{t}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

For the domain
Ex. 1. Find the equation of the tangent and normal to $g(x)=\frac{2}{3 \sqrt{1-x}}$, at $x=-3$.

$$
-x>-1
$$

$$
* \quad x<1
$$ Illustrate graphically.

$$
\begin{array}{cc|c}
\text { via. }: x=1 & 0 & \frac{2}{3} \\
\text { h.a. } y=0 & -3 & \frac{1}{3} \\
y & -8 & \frac{2}{9} \\
\end{array}
$$

$$
\begin{aligned}
& m_{t}=\lim _{h \rightarrow 0} \frac{g(-3+h)-g(-3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{3 \sqrt{1-(-3+h)}}-\frac{2}{6}}{h}-\frac{1}{3} \cdot \frac{2}{3 \sqrt{4-h}} \\
& =\lim _{h \rightarrow 0} \frac{(2-\sqrt{4-h})}{3 h(\sqrt{4-h})} \cdot \frac{(2+\sqrt{4-h})}{(2+\sqrt{4-h})} \\
& =\lim _{h \rightarrow 0} \frac{4-(4-h)}{3 h(\sqrt{4-h})(2+\sqrt{4-h})} \\
& \begin{array}{l}
h . a \\
y=0
\end{array} \\
& \text { For the tangent, } x=1 \\
& m_{t}=\frac{1}{24} ;\left(-3, \frac{1}{3}\right) j ; b= \\
& \text { Find } b: \frac{1}{3}=\frac{1}{24}(-3)+b \\
& \begin{array}{l}
\frac{1}{3}=\frac{1}{24} \quad \therefore \text { the equation } \\
\frac{1}{3}=-\frac{1}{8}+b \quad \text { of the tangent }
\end{array} \\
& \frac{8}{24}+\frac{3}{24}=b \quad \text { is } y=\frac{1}{24} x+\frac{11}{24} \\
& =\lim _{h \rightarrow 0} \frac{1}{3(\sqrt{4-h})(2+\sqrt{4-h})} \\
& =\frac{1}{3(2)(4)} \\
& =\frac{1}{24} \\
& \text { Find } b: \frac{1}{3}=-24(-3)+b \quad \therefore \text { the equation of } \\
& \frac{1}{3}=72+b \text { the normal at } x=-3 \\
& \begin{array}{ll}
\frac{1}{3}-72=b & \text { is } y=-24 x-\frac{215}{3} \text { or } \\
-71 \frac{2}{3}=b & 72 x+3 y+215=0
\end{array} \\
& -\frac{215}{3}=b \\
& 72 x+3 y+215=0
\end{aligned}
$$

We can also find an expression for the slope of the tangent to a curve at any point in terms of x.

The slope of the tangent to the graph $y=f(x)$ at any point $P(x, f(x))$ is:

$$
m_{t}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Ex. 2. Graph the function $h(x)=-2 x^{2}-8 x-6$, and determine the following:
a) the slopes of the tangents to the curve at the points whose x-coordinates are given
i) x
ii) 0
iii) -2

$$
h(x)=-2 x^{2}-8 x-6
$$

b) the equation of the tangent with a slope of 4

At the vertex: $x=\frac{-b}{2 a} \quad h(-2)=-2(-2)^{2}-8(-2)-6$
a) i) Let $f(x)=-2 x^{2}-8 x-6$

Find m at $(x, f(x))$

$$
=\frac{-(-8)}{2(-2)}
$$

$V(-2,2)$ opens

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-2(x+h)^{2}-8(x+h)-6-\left(-2 x^{2}-8 x-6\right)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-2 x^{2}-4 x h-2 h^{2}-8 x-8 h-6+2 x^{2}+8 x+6}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-4 x h-2 h^{2}-8 h}{h}
$$

$$
=\lim _{h \rightarrow 0}(-4 x-2 h-8)
$$

b) Find x if

$$
=-4 x-8
$$

$$
\therefore m_{-}=-4 x-8
$$

$$
\begin{aligned}
& \text { For tangent, } \\
& m_{t}=4 ;(-3,0) ; b=-
\end{aligned}
$$

ii) at $x=0$

$$
\begin{aligned}
m_{t} & =-4(0)-8 \\
& =-8
\end{aligned}
$$

$$
\begin{aligned}
m_{t} & =-4(-2)-8 \\
& =0
\end{aligned}
$$

iii) at $x=-2$

$$
\begin{aligned}
& m_{t}=4 \\
& -4 x-8=4 \\
& -4 x=12 \\
& x=-3 \\
& f(-3)=0 \text { the required tangent } \\
& \text { is } y=4 x+12 \text {. } \\
& \text { Find } b: 0=4(-3)+b \\
& 0=-12+b \\
& 12=6 \\
& \therefore \text { the equation of }
\end{aligned}
$$

Section 3.2 - Rates of Change

Recall:

$\begin{aligned} m_{t} & =\lim _{h \rightarrow 0} m_{P Q} \\ m_{t} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\end{aligned}$

" rate of change of
$y \underbrace{\text { with respect to }}_{\text {w.r.t. }} x$ "
We begin by considering a familiar rate of change - the velocity of a moving object.
For example, a truck that travels a distance of 300 km in a time of 4 h has an average velocity of $\frac{300}{4}$ or
The velocity at an instant of time, called the instantaneous velocity will often vary.
This velocity would be the speedometer reading at an instant of time.
Note: The speed of an object is the absolute value of its velocity. It indicates how fast an object is moving, whereas velocity indicates both speed and direction relative to a given coordinate system.

Distance vs Time

Average Velocity

average velocity $=m_{\text {secant }}$

$$
\begin{aligned}
& v_{\text {aug }}=\frac{\Delta \Delta}{\Delta t} \\
&=\frac{A_{2}-A_{1}}{t_{2}-t_{1}} \\
& \therefore v_{\text {aug }}=\frac{A\left(t_{2}\right)-\Delta\left(t_{1}\right)}{t_{2}-t_{1}} \\
& \text { aurage rate of change of } \\
& \text { distance w.r.t. time." }
\end{aligned}
$$

l

Ex. 1. A pebble is dropped from a cliff of height 80 m . After t seconds, it is s metres above the ground, where $s(t)=80-5 t^{2}, 0 \leq t \leq 4$. Find the pebbles's:
a) average velocity
i) for $t \in[2,4]$
ii) during the third second
a)

$$
\text { i) } \begin{aligned}
v_{a \cup g} & =\frac{\Delta(4)-\Delta(2)}{4-2} \\
& =\frac{0-60}{2} \\
& =-30
\end{aligned}
$$

\therefore the average velocity
of the pebble is $-30 \mathrm{~m} / \mathrm{s}$
ii) between $t=2 \quad$ \& $t=3$

$$
\begin{aligned}
v_{a v g} & =\frac{\Delta(3)-\Delta(2)}{3-2} \\
& =\frac{35-60}{1} \\
& =-25
\end{aligned}
$$

b) velocity at $t=2$

$$
\begin{aligned}
v & =m_{t} \\
& =\lim _{h \rightarrow 0} \frac{A(2+h)-A(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{80-5(2+h)^{2}-60}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{80-20-28 h-5 h^{2}-60}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-20 h-5 h^{2}}{h}
$$

$$
=\lim _{h \rightarrow 0}(-20-5 h)
$$

$$
=-20
$$

\therefore at $t=2$ the velocity.
of the pebble is $-20 \mathrm{~m} / \mathrm{s}$

t	$s(t)$
second< <0	80
sect	75
2	60
3	35
4	0

\therefore the average velocity

$$
\text { is }-25 \mathrm{~m} / \mathrm{s}
$$

Ex. 2. A dragster races down a 400 m strip in 8 s . Its distance in $\Delta(t)=6 t^{2}+2 t$ metres from the starting line after t seconds is $s(t)=80-5 t^{2}$.
a) Find its average velocity over the first 4 seconds.
b) Find its velocity as it crosses the finish line. Find m_{t} at $t=8$
c) Determine when its velocity is $38 \mathrm{~m} / \mathrm{s}$. Find t if $m_{t}=38$
a) between $t=0$; $t=4$

$$
\begin{aligned}
v_{\text {avg }} & =\frac{\Delta(4)-\Delta(t)}{4-0} \\
& =\frac{104-0}{4} \\
& =26
\end{aligned}
$$

\therefore its average velocity
is $26 \mathrm{~m} / \mathrm{s}$.
C)

$$
\begin{aligned}
& \text { Find } t \text { if } \\
& v(t)=38 \\
& 12 t+2=38 \\
& 12 t=36 \\
& t=3
\end{aligned}
$$

\therefore the velocity is
b) Find m_{t} at $(t, s(t))$

$$
\begin{aligned}
v & =m_{t}^{m} \\
& =\lim _{h \rightarrow 0} \frac{\Delta(t+h)-s(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{6(t+h)^{2}+2(t+h)-\left(6 t^{2}+2 t\right)}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{6 t^{2}+12 t h+6 h^{2}+2 t+2 h-6 t^{2}-2 t}{h}
$$

$=\lim _{h \rightarrow 0}(12 t+6 h+2)$
$=12 t+2$
$v(t)=12 t+2$
$v(8)=98$ finish line with a velocity of $98 \mathrm{~m} / \mathrm{s}$.

Ex. 3. When a certain drug is injected into a muscle, the muscle contracts an amount,
$C(x)$ in millimetres, for an amount, x millitres, of the drug, where $C(x)=\frac{4}{12+2 x}$.
Find the exact rate of change of the amount of muscle contraction if 50 ml of the drug is injected.

Find m_{t} at $x=50$
rate of change $=m_{t}$ at $x=50$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{C(50+h)-C(50)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4}{12+2(50+h)}-\frac{4}{112}}{h} \cdot \frac{4)}{28(112+2 h)} \\
& =\lim _{h \rightarrow 0} \frac{\frac{4112}{112+2 h}-\frac{1}{28}}{28(112+2 h)} \\
& =\lim _{h \rightarrow 0} \frac{112-(112+2 h)}{28 h(112+2 h)} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{28 h(112+2 h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{14(112+2 h)} \\
& =\frac{-1}{(14)(112)} \\
& =\frac{-1}{1568}
\end{aligned}
$$

\therefore the rate of change of the amount of muscle contraction is $\frac{-1}{1568} \mathrm{~mm} / \mathrm{ml}$.

