Warm-up

1. Graph $f(x)=2 x-4$.
2. Use the graph to evaluate the following limit.
$\lim _{x \rightarrow 3} f(x)$
$\because \lim _{x \rightarrow 3^{-}} f(x)=2=\lim _{x \rightarrow 3^{+}} f(x)$

$$
\therefore \lim _{x \rightarrow 3} f(x)=2
$$

3. Evaluate the same limit algebraically.

$$
\begin{aligned}
& \lim _{x \rightarrow 3} f(x) \\
= & \lim _{x \rightarrow 3}(2 x-4) \\
= & 2(3)-4
\end{aligned}
$$

Ex. 1. Evaluate the following limits by using the direct substitution technique.
a) $\lim _{x \rightarrow-1}\left(-x^{2}+2 x-4\right)$

$$
=-(-1)^{2}+2(-1)-4
$$

$$
=-7
$$

b) $\lim _{x \rightarrow 2} \frac{-4}{x+4}$
$=\frac{-4}{(2)+4}$
c) $\lim _{x \rightarrow 3^{+}} \sqrt{x^{2}-9}$

$$
=\sqrt{(3)^{2}-9}
$$

$$
=-\frac{2}{3}
$$

Evaluating the Limit of a Function Using One-Sided Limits

1. Graph $f(x)= \begin{cases}x-1, & \text { if } x<1 \\ 1, & \text { if } x=1 \\ x+1, & \text { if } x>1\end{cases}$

If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ does not exist.
If $\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)=L$.
2. Use the graph to evaluate one-sided limits, in order to find the indicated limit if it exists.
$\lim _{x \rightarrow 1} f(x)$

Left-sided limit

Right-sided limit

$\lim _{x \rightarrow 1^{-}} f(x)$
$\lim _{x \rightarrow 1^{+}} f(x)$
$=0$

$$
\cdots \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \therefore \lim _{x \rightarrow 1} f(x)
$$

3. Evaluate the same limit algebraically, using one-sided limits.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x) \\
= & \lim _{x \rightarrow 1^{-}}(x-1) \\
= & 1-1
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} f(x) \\
= & \lim _{x \rightarrow 1^{+}}(x+1)
\end{aligned}
$$

$$
=\hat{1}+1
$$

$$
\begin{array}{ll}
=1-1 & =1+ \\
=0 &
\end{array}
$$

$$
\because \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x), \therefore \lim _{x \rightarrow 1} f(x) \text { does not exist. }
$$

KEY CONCEPTS

- The limit of a function is written as $\lim _{x \rightarrow a} f(x)=L$, which is read as "the limit of $f(x)$ as x approaches a, equals L".
- If the values of $f(x)$ approach L more and more closely as x approaches a more and more closely (from either side of a , but $x \neq a$, then $\lim _{x \rightarrow a} f(x)=L$.
- The left-sided limit of a function is written as $\lim _{x \rightarrow a^{-}} f(x)$, which is read as "the limit of $f(x)$ as x approaches a from the left".
- If the values of $f(x)$ approach L more and more closely as x approaches a more and more closely, with $x<a$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
- The right-sided limit of a function is written as $\lim _{x \rightarrow a^{+}} f(x)$, which is read as "the limit of $f(x)$ as x approaches a from the right ${ }^{n}$.
- If the values of $f(x)$ approach L more and more closely as x approaches a more and more closely, with $x>a$, then $\lim _{x \rightarrow a^{+}} f(x)=L$.
- In order for $\lim _{x \rightarrow a} f(x)$ to exist, the one-sided limits $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ must both exist and be equal. That is,

If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ does not exist.
If $\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)$, then $\lim _{x \rightarrow a} f(x)=L$

- To check that a function $f(x)$ is continuous at $x=a$, check that the following three conditions are satisfied:
a) $f(a)$ is defined (a is in the domain of $f(x)$)
b) $\lim _{x \rightarrow a} f(x)$ exists
c) $\lim _{x \rightarrow a} f(x)=f(a)$

Also, if $f(x)$ is continuous at $x=a$, then $\lim _{x \rightarrow a} f(x)=f(a)$.

- Every polynomial P is continuous at every number, that is, $\lim _{x \rightarrow a} P(x)=P(a)$.
- Every rational function $f(x)=\frac{P(x)}{Q(x)}$ where P and Q are polynomials, is continuous at every number a for which $Q(a) \neq 0$, that is, $\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}=\frac{P(a)}{Q(a)}, Q(a) \neq 0$.
- Discontinuous:
a) If a function $f(x)$ has a removable discontinuity at $x=a$, then $\lim _{x \rightarrow a} f(x)=L$ exists, and the discontinuity can be removed by (re)defining $f(x)=L$ at the single point a.
b) If a function has a jump discontinuity, the function "jumps" from one value to another.
c) If a function $f(x)$ has in infinite discontinuity at $x=a$, the absolute values of the function become larger and larger as x approaches a.

Ex. 2. By evaluating one-sided limits, find the indicated limit if it exists. Graph the function and state whether the function is continuous or discontinuous with reasons.
Note: A function that is continuous has no breaks in its graph.
A function that is discontinuous has some type of break in its graph. This break is the result of a hole, jump, or vertical asymptote.
a) $f(x)=\left\{\begin{array}{l}2 x+4, \text { if } x<-2 \\ 4-x^{2}, \text { if } x \geq-2\end{array} ; \lim _{x \rightarrow-2} f(x)\right.$
L.S.L. R.S.L.
$\lim _{x \rightarrow-2^{-}} f(x) \quad \lim _{x \rightarrow-2^{+}} f(x)$
$=\lim _{x \rightarrow-2^{-}}(2 x+4)=\lim _{x \rightarrow-2^{+}}\left(4-x^{2}\right)$
$=2(-2)+4=4-(-2)^{2}$
$=0$

$$
\begin{aligned}
& \because \lim _{x \rightarrow-2^{-}} f(x)=0=\lim _{x \rightarrow 2^{+}} f(x) \\
& \therefore \lim _{x \rightarrow-2^{-}} f(x)=0
\end{aligned}
$$

b) $g(x)=\left\{\begin{array}{c}-x+3, \text { if } x \geq 1 \\ x^{3}, \text { if } x<1\end{array} ; \lim _{x \rightarrow 1} g(x)\right.$
L.S.L. R.S.L.
$\lim _{x \rightarrow 1^{-}} g(x) \lim _{x \rightarrow 1^{+}} g(x)$
$\begin{array}{ll}x \rightarrow 1^{-} & x \rightarrow 1^{+} \\ \lim _{x \rightarrow 1} x^{3} & =\lim _{1}(-x+3)\end{array}$
$=\lim _{x \rightarrow 1^{-}} x^{3}=\lim _{x \rightarrow 1^{+}}(-x+3)$
$=(1)^{3}=-(1)+3$
$=1 \quad=2$
$\because \lim _{x \rightarrow!^{-}} g(x) \neq \lim _{x \rightarrow 1^{+}} g(x)$
$\therefore \lim _{x \rightarrow 1} g(x)$ does not exist.

Ex. 3. Sketch the graph of any function that satisfies the given conditions in each case.

a) $\lim _{x \rightarrow-3} f(x)=3, f(-3)=0$

$$
\lim _{x \rightarrow-3^{-}} f(x) \sum_{x \rightarrow-3^{+}} \lim _{x} f(x)
$$

$$
=3
$$

Note: There is a
removable discontinuity
at $x=-3$.
b) $\lim _{x \rightarrow 2^{-}} f(x)=-1, \lim _{x \rightarrow 2^{+}} f(x)=1$

Ex. 4. The function $p(t)$ describes the production of unleaded gasoline in a refinery, in thousands of litres, where the time t, is measured in days.
a) Evaluate $\lim _{t \rightarrow 1} p(t)$.

$$
\lim _{t \rightarrow 1}^{t \rightarrow 1} p(t)=30
$$

b) Evaluate $\lim _{t \rightarrow 3^{-}} p(t)$ and $\lim _{t \rightarrow 3^{+}} p(t)$.

$$
\begin{array}{ll}
& \lim _{t \rightarrow 3^{-}} p(t) \quad \\
=30 & =0 \\
t \rightarrow 3^{+}
\end{array}
$$

c) When was the refinery shut down for repairs and when did production begin again?

The refinery shut down on day 3 and opened on day 5 .
d) At what times is the production function $p(t)$ discontinuous?

$$
p(t) \text { is discontinuous at } t=3 \text { and } t=5
$$

e) At what time was the production highest and what was the rate of change of production at this time?

$$
\text { Production was highest at } t=2
$$

where the rate of change of production was

Warm-up

1. Evaluate each limit, if possible, using the direct substitution technique for evaluating limits.
a) $\lim _{x \rightarrow 4}(\sqrt{x}+2)_{2}^{2}$
b) $\lim _{x \rightarrow 0}(\sqrt{1+\sqrt{1+x}})$
c) $\lim _{x \rightarrow a} \frac{(x+a)^{2}}{x^{2}+a^{2}}$
d) $\lim _{x \rightarrow-2} \frac{1}{x+2}$
$=(\sqrt{4}+2)^{2}$
$=\sqrt{1+\sqrt{1}}$
$=\frac{(a+a)^{2}}{a^{2}+a^{2}}$
$=\frac{1}{-2+2}$
$=\frac{1}{0}$
$=(2+2)^{2}$
$=\sqrt{1+1}$
$=\sqrt{2}$
$=\frac{(2 a)^{2}}{2 a^{2}}=2 \quad=\frac{1}{0} \quad$ undefined
$=16$
e) $\lim _{x \rightarrow 4} f(x)$ if $f(x)=\left\{\begin{array}{l}x+3, \text { if } x>2 \\ = \\ =\lim _{x \rightarrow+}(x+3)\end{array}\right.$, if $x \leq 2$
$=\frac{4 a^{2}}{2 a^{2}}$

* $\underset{f(\mathrm{f})}{ } \lim _{x \rightarrow-\frac{1}{2}} f(x)$ if $f(x)=\left\{\begin{array}{l}x+3, \text { if } x>2 \\ \frac{4}{x}, \text { if } x \leq 2\end{array}\right.$
$=\lim _{x \rightarrow-\frac{1}{2}} \frac{4}{x}$
$=(4)+3$
$=7$
$\begin{aligned} & x \rightarrow-\frac{1}{2} \\ = & 4 \div\left(-\frac{1}{2}\right) \\ = & -\frac{4}{1} \times \frac{2}{1}\end{aligned} \quad \neq-8$

2. By evaluating one-sided limits, find the indicated limit if it exists.

Graph the function and state whether the function is continuous.

$$
f(x)=\left\{\begin{array}{l}
x+3, \text { if } x>2 \\
\frac{4}{x}, \text { if } x \leq 2
\end{array} ; \lim _{x \rightarrow 2} f(x)\right.
$$

L.S.L. R.S.L.
$\lim _{x \rightarrow} f(x)$
$\lim _{x \rightarrow 2^{+}} f(x)$
$x \rightarrow 2^{-}$
$=\lim _{x \rightarrow 2^{-}} \frac{4}{x}$

$$
=\lim _{x \rightarrow 2^{+}}(x+3)
$$

$=\frac{4}{2}$

$$
=(2)+3
$$

$$
=5
$$

$=2$

$$
\because \lim _{x \rightarrow 2^{-}} f(x) \pm \lim _{x \rightarrow 2^{+}} f(x)
$$

Note: The function is dis continuo us $\therefore \lim _{x \rightarrow 2} f(x)$ does not exist at $x=0$ where there is an
3. Sketch the graph of any function that satisfies the given conditions in each case. there "is a "jump "discontin,
a) $\lim _{x \rightarrow 3} f(x)=-2, f(x)$ is discontinuous at $x=3$
b) $\lim _{x \rightarrow 0} g(x)=1, g(x)$ is continuous at $x=0$

Date: \qquad Section 3.4 - Limits of Indeterminate Forms

Sometimes the limit of $f(x)$ as x approaches a cannot be found by direct substitution. This is of special interest when direct substitution results in an indeterminate form $\left(\frac{0}{0}\right)$. In such cases, we look for an equivalent function that agrees with f for all values except the troublesome value at $x=a$.

Recall: Factoring

Difference of squares

$$
\begin{gathered}
a^{2}-b^{2} \\
=(a-b)(a+b)
\end{gathered}
$$

Difference of cubes

$=(a-b)\left(a^{2}+a b+b^{2}\right)$

Sum of cubes

$$
\begin{aligned}
& a^{3}+b^{3} \\
& =(a+b)\left(a^{2}-a b+b^{2}\right)
\end{aligned}
$$

Ex. 1. Evaluate the limit of each indeterminate quotient by using factoring or rationalizing techniques.

$$
\begin{aligned}
& \text { a) } \lim _{x \rightarrow-5} \frac{x^{2}-25}{x+5}\left(\frac{0}{0}\right) \quad \text { b) } \lim _{x \rightarrow-3} \frac{x^{3}+27}{3 x+9}\left(\frac{0}{0}\right) \quad \text { c) } \lim _{x \rightarrow 0} \frac{3^{2 x}-3^{x}}{1-3^{x}}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow-5} \frac{(x-5)(x+5)^{\prime}}{(x+5)} \\
& =\lim _{x \rightarrow-3} \frac{x^{3}+3^{3}}{3(x+3)} \\
& =\lim _{x \rightarrow-3} \frac{(x+3)\left(x^{2}-3 x+9\right)}{3(x+5)} \\
& =\lim _{x \rightarrow 0} \frac{3^{x}\left(3^{x}-1\right)}{-3^{x}+1} \\
& =\lim _{x \rightarrow 0} \frac{3^{x}\left(3^{x}-1\right)}{-\left(3^{x}-1\right)} \\
& =\lim _{x \rightarrow 0} \frac{3^{x}}{-1} \\
& =\frac{9+9+9}{3}=-1 \\
& \xrightarrow[\substack{\text { hole } \\
\text { af } \\
(-5,-10)}]{\substack{5 \\
0}} \\
& =\lim _{x \rightarrow-3} \frac{x^{2}-3 x+9}{3} \\
& =9 \\
& 2 x - 3 \longdiv { 2 x ^ { 3 } - 9 x ^ { 2 } + x + 1 2 } \\
& \text { d) } \lim _{x \rightarrow \frac{3}{2}} \frac{8 x^{3}-27}{2 x^{3}-9 x^{2}+x+12} \\
& \frac{2 x^{3}-3 x^{2}}{-6 x^{2}+x} \\
& \text { e) } \lim _{x \rightarrow 0} \frac{1-\sqrt{1+3 x}}{x} \quad\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow \frac{3}{2}} \frac{(2 x)^{3}-(3)^{3}}{(2 x-3)\left(x^{2}-3 x-4\right)} \\
& =\lim _{x \rightarrow 3}\left[(2 x)^{\prime}-(3)\right]\left[(2 x)^{2}+(2 x)(3)+(3)^{2}\right] \\
& \frac{-6 x^{2}+9 x}{-8 x+12} \\
& =\lim _{x \rightarrow 0} \frac{(1-\sqrt{1+3 x})}{x} \cdot \frac{(1+\sqrt{1+3 x})}{(1+\sqrt{1+3 x})} \\
& \frac{-8 x+12}{0}=\lim _{x \rightarrow 0} \frac{1-(1+3 x)}{x(1+\sqrt{1+3 x})} \\
& x \rightarrow \frac{3}{2}(2 x-3)\left(x^{2}-3 x-4\right) \\
& =\lim _{x \rightarrow 0} \frac{-3 x^{\prime}}{x(1+\sqrt{1+3 x})} \\
& =\lim _{x \rightarrow \frac{3}{2}} \frac{4 x^{2}+6 x+9}{x^{2}-3 x-4} \\
& =\frac{{ }^{4}\left(\frac{9}{4}\right)+6\left(\frac{3}{x}\right)+9}{\frac{9}{4}-\frac{9}{2}-4} \\
& \begin{array}{l}
=\frac{27}{-\frac{25}{4}} \\
=-27 \times \frac{4}{25}
\end{array}\left\{\begin{array}{l}
\frac{9}{4}-\frac{18}{4}-\frac{16}{4}
\end{array}\right. \\
& \begin{array}{l}
=-27 \times \frac{4}{25} \\
=\frac{-108}{25}
\end{array}
\end{aligned}
$$

Ex. 2. Evaluate the following limit using the change of variable technique.

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\sqrt{\frac{1}{6}}-1}{\sqrt{x}-1} \quad\left(\frac{0}{0}\right) \\
& =\lim _{u \rightarrow 1} \frac{u-1}{u^{4}-1} \quad\left(\frac{0}{0}\right) \\
& \begin{array}{l}
=\lim _{u \rightarrow 1} \frac{u-1}{\left(u^{3}-1\right)\left(u^{3}+1\right)} \\
=\lim _{u \rightarrow 1} \frac{(u-1)}{} \frac{(u-1)\left(u^{2}+u+1\right)\left(u^{3}+1\right)}{(u-1)}
\end{array} \\
& =\lim _{u \rightarrow 1} \frac{1}{\left(u^{2}+u+1\right)\left(u^{3}+1\right)} \\
& =\frac{1}{(3)(2)} \\
& =\frac{1}{6} \\
& \text { Let } u=x^{\frac{1}{6}} \\
& \text { If } x \rightarrow 1, \frac{1}{6} \\
& u \rightarrow(1)^{6} \\
& u \rightarrow \sqrt[6]{1} \\
& u \rightarrow 1 \\
& u^{b}=x^{\prime} \\
& \therefore x=u^{6}
\end{aligned}
$$

Ex. 3. Evaluate the following limit using the one-sided limits technique. Illustrate your results graphically.

$$
\lim _{x \rightarrow 2} \frac{x|x-2|}{x-2} \quad\left(\frac{0}{0}\right)
$$

Case (1)
Case (a)
If $x-2<0$

$$
x<2
$$

$$
\text { If } x-2>0
$$

$$
x>2
$$

$$
\begin{aligned}
& L \cdot S \cdot L \\
= & \lim _{x \rightarrow 2^{-}} \frac{x\left[-\left(x-2^{\prime}\right)\right]}{x-2_{1}} \\
= & \lim _{x \rightarrow 2^{-}}(-x) \\
= & -2
\end{aligned}
$$

$$
=\lim _{x \rightarrow 2^{+}} x
$$

$$
=2
$$

$$
\because L . S . L . \neq R . S . L
$$

$$
\text { Let } f(x)=\frac{x|x-2|}{x-2}
$$

$$
f(x)=\left\{\begin{aligned}
-x & , \text { if } x<2 \\
x & \text {, if } x>2
\end{aligned}\right.
$$

Date: \qquad

The Limit Laws

Suppose that the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist and c is a constant.
Then, we have the following limit laws.

1. $\lim _{x \rightarrow a} c=c$
2. $\lim _{x \rightarrow a} x=$
3. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \quad$-The limit of a sum is the sum of the limits.
4. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x) \quad$-The limit of a difference is the difference of the limits.
5. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$-The limit of a constant times a function is the constant times the limit of the function.
6. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$, -The limit of a product is the product of the limits.
$f(x) \quad \lim f(x)$ "Product Law"
7. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\operatorname{lima}_{x \rightarrow a}}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$-The limit of a quotient is the quotient of the limits.
8. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$
10. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$
-The limit of a root is the root of the limit.
11. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$
-The limit of a power is the power of the limit.

The limit of a root is the root of the limit.
"Root Law"

Ex. 1. If $\lim _{x \rightarrow-2} f(x)=9$, state and use the properties of limits to evaluate each limit.
a) $\lim _{x \rightarrow-2} 2[f(x)]^{2}$
$=2 \cdot \lim _{x \rightarrow-2}[f(x)]_{2}^{2} \leftarrow$ by the Constant Multiple Law
$=2 \cdot\left[\lim _{x \rightarrow-2} f(x)\right]^{2} \&$ by the Power Law

$$
\begin{aligned}
& =2(9)^{2} \\
& =162
\end{aligned}
$$

b) $\lim _{x \rightarrow-2} \frac{\sqrt{f(x)}}{f(x)-x^{2}}$
$=\frac{\lim _{x \rightarrow-2} \sqrt{f(x)}}{\lim _{x \rightarrow-2}\left[f(x)-x^{2}\right]}<$ by the Quotient Law
$=\frac{\sqrt{\lim _{x \rightarrow-2} f(x)}}{\lim _{x-2}(x)}$ \&by the Root Law
$\lim _{x \rightarrow-2} f(x)-\lim _{x \rightarrow-2} x^{2} \longleftarrow$ by the Difference Law
$=\frac{\sqrt{9}}{9-(4)} \quad \pi=\frac{3}{5}$

Ex. 2. Given the graphs of f and g, use and state the
Limit Laws to evaluate the following limits if they exist.
a) $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$
$=\frac{\lim _{x \rightarrow 2} f(x)}{\lim _{x \rightarrow 2} g(x)} \leftarrow$ by the quotient law
$\begin{array}{ll}\therefore \frac{1.5}{0} \quad \because \lim _{x \rightarrow 2} g(x)=0 \\ \therefore \lim _{x \rightarrow 2} & \frac{f(x)}{g(x)} \text { d.n.e. }\end{array}$

b) $\lim _{x \rightarrow-2}[3 f(x)+g(x)]$
c) $\lim _{x \rightarrow 1^{1} .}[f(x) g(x)]$
$=\lim _{x \rightarrow-2} 3 f(x)+\lim _{x \rightarrow-2} g(x) \in$ by the sum Law $=\lim _{x \rightarrow 1^{-}} f(x) \cdot \lim _{x \rightarrow 1^{-}} g(x)<_{\text {Product Law }}$
$=3 \lim _{x \rightarrow-2} f(x)+\lim _{x \rightarrow-2} g(x) \leftarrow$ by the constant $=(2)(-2)$
$=3(1)+(-1) \quad=-4$
$=2$

Ex. 3. Evaluate the following limits if possible. (Use $+\infty$ or $-\infty$ if appropriate.) $\quad f(x)=\frac{x^{2}}{x^{2}-4}$
a) $\lim _{x \rightarrow 4} \frac{x^{2}}{x^{2}-4}$
b) $\lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}-4}$
c) $\lim _{x \rightarrow+\infty} \frac{x^{2}}{x^{2}-4} \div \frac{x^{2}}{x^{2}}$
$=\frac{(4)^{2}}{(4)^{2}-4}$
$=1$
$=\frac{16}{12}$
$=\lim _{x \rightarrow+\infty} \frac{1}{1-\frac{4}{x^{2}}}$
$=\frac{1}{1-0}$
$=\frac{4}{3}$
d) $\lim _{x \rightarrow-2^{-}} \frac{x^{2}}{x^{2}-4}$
e) $\lim _{x \rightarrow-2^{+}} \frac{x^{2}}{x^{2}-4} \quad \frac{4}{0}$
$=1$

$=+\infty$ if $_{x=-1.9}=\lim _{x \rightarrow-2^{+}} \frac{x^{2}}{(x-2)(x+2)}$
f) $\lim _{x \rightarrow-2} \frac{x^{2}}{x^{2}-4}$
$\frac{(+)}{(-)(+)}=\square \infty \quad \because \lim _{x \rightarrow-2^{-}} \frac{x^{2}}{x^{2}-4} \neq \lim _{x \rightarrow-2^{+}} \frac{x^{2}}{x^{2}-4}$

Ex. 4. Evaluate the following limits if possible. (Use $+\infty$ or $-\infty$ if appropriate.)

d) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}+2 x-3} \quad \frac{}{12}$

$$
\begin{aligned}
& =\frac{0}{12} \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\text { e) } & \lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}\left(\frac{0}{0}\right) \\
= & \lim _{x \rightarrow-3} \frac{(x-3)(x+3)}{(x+3)(x-1)} \\
= & \lim _{x \rightarrow-3} \frac{x-3}{x-1} \\
= & \frac{-6}{-4} \\
= & \frac{3}{2}
\end{aligned}
$$

Date:
Section 3.5 - Continuity
When we talk about a function being continuous at a point, we mean that the graph passes through the point without a break.
A graph that is not continuous at a point (sometimes referred to as being discontinuous at a point) has a break of some type at the point. The following graphs illustrate these ideas.
a. Continuous for all values of the do
c. Discontinuous at $x=1$
(jump discontinuity)

b. Discontinuous at $x=1$ (removable discontinuity)

d. Discontinuous at $x=1$ (infinite discontinuity)

A function f is continuous at $x=a$ if all three of the following conditions are satisfied:

- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)$ exists
- $\lim _{x \rightarrow a} f(x)=f(a)$

Ex. 1. Given $f(x)=\left\{\begin{array}{c}x^{2}-3, \text { if } x<-1 \\ x-1, \text { if } x \geq-1\end{array}\right.$,
a) graph the function.
b) determine $\lim _{x \rightarrow-1} f(x) . \quad \lim f(x)=-2$ $x \rightarrow-1$
c) determine $f(-1) \quad f(-1)=-2$
d) is f continuous at $x=-1$? Explain.

> yes, f is continuous af $x=-1$ since $\lim _{x \rightarrow-1} f(x)=f(-1)$

Ex. 2. Test the continuity of each of the following functions at $x=2$.
If the function is not continuous at $x=2$, give a reason why it is not continuous. Illustrate graphically.
a) $g(x)= \begin{cases}4-x^{2}, & \text { if } x<2 \\ 3 & \text {, if } x \geq 2\end{cases}$
$g(2)=3$
find l
find $\lim _{x \rightarrow 2} g(x)$

$$
\begin{aligned}
& \text { L.S.L. } \\
= & \lim _{x \rightarrow 2^{-}}\left(4-x^{2}\right) \\
= & 4-(2)^{2} \\
= & 0
\end{aligned}
$$

R.S.L.

$$
=\lim _{x \rightarrow 2^{+}} g(x)
$$

$$
=\lim _{x \rightarrow 2^{+}} 3
$$

$$
\because \lim _{x \rightarrow 2^{-}} g(x) \neq{ }^{3} \lim _{x \rightarrow 2^{+}} g(x), \therefore \lim _{x \rightarrow 2} g(x) \underset{\text { aet } n \cdot e \sum^{\dot{\prime}},}{ } g(x) \text { is discontinuous }
$$

b) $f(x)=\frac{1}{(x-2)^{2}}$

- $f(2)$ d.n.e
$\because f(2)$ is undefined,
\therefore the function is discontinuous at $x=2$.

c) $h(x)=\frac{x^{2}-x-2}{x-2}, x \neq 2$ and $h(2)=2$
- $h(2)=2$
- Find $\lim _{x \rightarrow 2} h(x)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+1)}{(x-2)} \because \lim _{x \rightarrow 2} h(x) \neq h(2) \\
& =\lim _{x \rightarrow 2}(x+1) \quad \text { The function is } \\
& =3
\end{aligned}
$$

HW: p. 110 \#1, 4 to 8, 10 to 13 discontinuous at $x=2$
Review for Test: p. 115 \#1 to 12, 13 to 15 (Evaluate using factoring or rationalizing techniques), 16 to 18; Day 6 Worksheet \#1 to 3 even parts; p. 119 \#4, 9, 11 to 17

