UNIT 2 - DERIVATIVES

Section 4.1 - The Derivative Function

Ex. 1. Find the slope of the tangent to $y=\frac{1}{\sqrt{x}}$ at any point (x, y).
Let $f(x)=\frac{1}{\sqrt{x}}$
$m_{t}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h} \cdot \frac{\sqrt{x}(\sqrt{x+h})}{\sqrt{x}(\sqrt{x+h})}$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{x}-\sqrt{x+h})}{h \cdot \sqrt{x} \cdot \sqrt{x+h}} \cdot \frac{(\sqrt{x}+\sqrt{\lambda+h})}{(\sqrt{x}+\sqrt{x+h})}$
$=\lim _{h \rightarrow 0} \frac{x-x-h}{h \cdot \sqrt{x} \cdot \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}$
$=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x} \cdot \sqrt{x+h} \cdot(\sqrt{x}+\sqrt{x+h})} \int$
$=\frac{-1}{\sqrt{x} \cdot \sqrt{x} \cdot 2 \sqrt{x}} \quad=\frac{-1}{2 x \sqrt{x}}$
$=\frac{o r-\sqrt{x+h}}{2(\sqrt{x})^{3}}$ or $\frac{-1}{2 \sqrt{x^{3}}}$
We say that $\frac{-1}{2 \sqrt{x^{3}}} \quad$ is the "derivative" of $y=\frac{1}{\sqrt{x}}$.
\therefore The derivative is an expression for the slope of the tangent to a curve.

Notation:

\forall If $f(x)=\frac{1}{\sqrt{x}}$ then $f^{\prime}(x)=\frac{-1}{2 \sqrt{x^{3}}}$ "f prime at \boldsymbol{x} "
\nless If $y=\frac{1}{\sqrt{x}}$ then $\frac{d y}{d x}=\frac{-1}{2 \sqrt{x^{3}}}$ "dy by $d x$ " or "the derivative of y with respect to x "
If $y=\frac{1}{\sqrt{x}}$ then $y^{\prime}=\frac{-1}{2 \sqrt{x^{3}}} \quad$ "y prime"
Note: $\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)=\frac{-1}{2 \sqrt{x^{3}}}$ reads as "the derivative of $\frac{1}{\sqrt{x}}$ w.r.t. x "

The derivative of $y=f(x)$ is:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Ex. 2. Find the derivative of the following functions from first principles.

Ex. 3. An object moves in a straight line with its position at time t seconds given by $s(t)=8 t-t^{2}$ where s is measured in metres.
a) Find the initial velocity. Find r if $t=0$
b) Determine when the object is at rest. Find t if $r=0$
c) Find the average velocity during the third second. Find $m_{\text {secant }}$.
a)

$$
v(t)=m_{t}
$$

between $t=2 \& t=3$

$$
=A^{\prime}(t)
$$

$$
=\lim _{h \rightarrow 0} \frac{\Delta(t+h)-\Delta(t)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{8(t+h)-(t+h)^{2}-\left(8 t-t^{2}\right)}{h}
$$

$$
\text { b) } \begin{aligned}
& \text { Find } \dot{t} \text { if } \\
& v(t)=0 \\
& 8-2 t=0 \\
&-2 t=-8 \\
& t=4
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{8 t+8 h-t^{2}-2 t h-h^{2}-x t+t^{2}}{h} \therefore \text { At } t=4 a
$$

$$
=\lim _{h \rightarrow 0}(8-2 t-h)
$$

at rest.

$$
=8-2 t
$$

$$
\therefore v(t)=8-2 t
$$

$$
v(0)=8
$$

$$
\text { c) } \begin{aligned}
v_{\text {avg }} & =\frac{\Delta(3)-\Delta(2)}{3-2} \\
& =\frac{15-12}{1}
\end{aligned}
$$

'the initial velocity is $8 \mathrm{~m} / \mathrm{s}$. during the third second.

$$
\begin{aligned}
& \text { a) } f(x)=x^{2} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h h_{2}} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h) \\
& =2 x \\
& \therefore \text { If } f(x)=x^{2} \text { then } \\
& f^{\prime}(x)=2 x \\
& \text { b) } y=\frac{1}{x^{2}} \text {, Let } f(x)=\frac{1}{x^{2}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x^{2}-(x+h)^{2}}{h x^{2}(x+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}-x^{2}-2 x h-h^{2}}{h x^{2}(x+h)^{2}} \\
& =\lim _{h \rightarrow 0} \frac{-2 x h-h^{2}}{h x^{2}(x+h)^{2}} \div \frac{h}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 x-h}{x^{2}(x+h)^{2}} \quad \therefore \text { If } y=\frac{1}{x^{2}} \text { then } \\
& =\frac{-2 x}{x^{4}} \\
& \frac{d y}{d x}=-\frac{2}{x^{3}} \\
& =-\frac{2}{x^{3}}
\end{aligned}
$$

Ex. 4. Show that the derivative of the absolute value function $f(x)=|x|$ does not exist at $x=0$. Illustrate your solution graphically.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
&=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
&=\lim _{h \rightarrow 0} \frac{|h|-|0|}{h} \\
&= \lim _{h \rightarrow 0} \frac{|h|}{h} \\
& \lim _{h \rightarrow 0^{-}}-\frac{-h}{h} \quad \lim _{h \rightarrow 0^{+}} \frac{+h}{h} \\
&=\lim _{h \rightarrow 0^{-}}(-1)=\lim _{h \rightarrow 0^{+}} \\
&=-1 \\
& \because \text { R.S.L. } 1 \\
&=\text { R.S.L.L.L. }
\end{aligned}
$$

$\lim _{i n}$ in l does not exist.
The Existence of Derivatives
A function f is said to be differentiable at a if $f^{\prime}(a)$ exists. At points where f is not differentiable, we say that the derivative does not exist. Three common ways for a derivative to fail to exist are shown.

Cusp

Vertical Tangent

Discontinuity

Ex. 1. From first principles find the derivative of $y=x^{2}-5 x+1$.

Let $f(x)=x^{2}-5 x+1$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-5(x+h)+1-\left(x^{2}-5 x+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-5 x-5 h+1-x^{2}+5 x-1}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-5)
\end{aligned}
$$

$$
=2 x-5
$$

$$
\therefore \text { If } y=x^{2}-5 x+1 \text { then } \frac{d y}{d x}=2 x-5
$$

Recall: i) if $f(x)=x^{2}$ then
ii) if $f(x)=x^{3}$ then

$$
f^{\prime}(x)=2 x
$$

iii) if $f(x)=x^{4}$ then

$$
f^{\prime}(x)=4 x^{3}
$$

iv) if $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$

Recall: $a^{2}-b^{2}=(a-b)(a+b)$

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right)
\end{aligned}
$$

* $\quad a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a^{2} b^{n-3}+a b^{n-2}+b^{n-1}\right)$

Ex. 2. From first principles find the derivative of $f(x)=x^{n}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{[(x+h)-x]\left[(x+h)^{n-1}+(x+h)^{n-2} \cdot x^{\prime}+(x+h)^{n-3} \cdot x^{2}+\cdots+(x+h)^{2} \cdot x^{n-3}+(x+h)^{1} x^{n-2}+x^{n-1}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{k\left[\left[(x+h)^{n-1}+(x+h)^{n-2} \cdot x^{1}+(x+h)^{n-3} \cdot x^{2}+\cdots+(x+h)^{2} \cdot x^{n-3}+(x+h)^{1} \cdot x^{n-2}+x^{n-1}\right]\right.}{n-1} \\
& \begin{array}{l}
=x^{n-1}+\underbrace{x^{n-2} \cdot x^{1}}+\underbrace{x^{n-3} \cdot x^{2}}+\cdots+\underbrace{x^{2} \cdot x^{n-3}}+\underbrace{x^{1} \cdot x^{n-2}}+x^{n-1} \\
=x^{n-1}+x^{n-1}+x^{n-1}+\cdots+x^{n-1}+x^{n-1}+x^{n-1} \\
=n \cdot x^{n-1}
\end{array} \\
& \therefore \text { If } f(x)=x^{n} \text { then } f^{\prime}(x)=n \cdot x^{n-1}
\end{aligned}
$$

POWER RULE
If $y=a x^{n}$ then $\frac{d y}{d x}=n a x^{n-1}$

Note: If $y=k$, where k is a constant, $\frac{d y}{d x}=0$

$$
\begin{aligned}
y & =k x^{0} \\
\frac{d y}{d x} & =0 \cdot k x^{0-1} \\
& =0
\end{aligned}
$$

Ex. 3. Differentiate each function using the Power Rule. Use either the Leibniz notation $\frac{d y}{d x}$ or the prime notation $f^{\prime}(x)$, depending on which is appropriate.
a) $y=4$
c) $f(x)=\frac{1}{x}$

$$
\frac{d y}{d x}=0
$$

$$
\begin{aligned}
& \text { b) } g(x)=3 x^{4}+12 x^{3}-8 x^{1}+1 \\
& g^{\prime}(x)=12 x^{3}+36 x^{2}-8 x^{0}+0 \\
& g^{\prime}(x)=12 x^{3}+36 x^{2}-8
\end{aligned}
$$

$$
\therefore f^{\prime}(x)=-\frac{1}{x^{2}}
$$

$$
\begin{aligned}
\text { d) } s & =\sqrt{t} \\
\Delta & =t^{\frac{1}{2}} \\
\frac{d \Delta}{d t} & =\frac{1}{2} t^{-\frac{1}{2}} \\
\frac{d \Delta}{d t} & =\frac{1}{2 \sqrt{t}}
\end{aligned}
$$

e) $y=\left(\frac{x}{2}\right)^{2}$
f) $h(t)=-2\left(t^{2}-3\right)^{2}$

$$
\begin{aligned}
& h(t)=-2\left(t^{2}-3\right)\left(t^{2}-3\right) \\
& h(t)=-2 t^{4}+12 t^{2}-18 \\
& h^{\prime}(t)=-8 t^{3}+24 t
\end{aligned}
$$

Ex. 4. Find the equations of the tangent and normal to the curve $y=(x-3)^{2}-2$ at $x=5$.
(Note: The normal line is perpendicular to the tangent line at the point of tangency.)

$$
\begin{aligned}
y & =(x-3)^{2}-2 \\
y & =x^{2}-6 x+7 \\
m_{t} & =\frac{d y}{d x} \\
& =2 x-6 \\
\text { at } & x=5 \\
m_{t} & =4 \quad \text { i } \quad y=2
\end{aligned}
$$

For tangent,

$$
m_{t}=4 ;(5,2) ; b=
$$

Find b

$$
\begin{aligned}
2 & =4(5)+b \\
2 & =20+b \\
-18 & =b
\end{aligned}
$$

\therefore the equation of the tangent is $y=4 x-18$.

$$
m_{n}=-\frac{1}{4} ;(5,2) ; b=
$$

Find b
$2=-\frac{1}{4}(5)+b \quad \therefore$ the equation
$\frac{8}{4}=-\frac{5}{4}+b$

$$
\frac{13}{4}=b
$$

is $y=-\frac{1}{4} x+\frac{13}{4}$

Ex. 5. Find $f^{\prime}(a)$ for the given function $f(x)$ at the given value of a.

$$
\text { a) } \begin{aligned}
f(x) & =\left(1-\frac{2}{x}\right)\left(3-\frac{4}{x}\right) ; a=1 \\
f(x) & =3-\frac{10}{x}+\frac{8}{x^{2}} \\
f(x) & =3-10 x^{-1}+8 x^{-2} \\
f^{\prime}(x) & =10 x^{-2}-16 x^{-3} \\
f^{\prime}(x) & =\frac{10}{x^{2}}-\frac{16}{x^{3}} \\
f^{\prime}(1) & =10-16 \\
& =-6 \\
\therefore f^{\prime}(1) & =-6
\end{aligned}
$$

b) $f(x)=\frac{2+\sqrt{x^{3}}}{\sqrt{4 x}} ; a=4$

$$
\begin{aligned}
f(x) & =\frac{2+x^{\frac{3}{2}}}{\sqrt{4} \cdot \sqrt{x}} \\
f(x) & =\frac{2+x^{\frac{3}{2}}}{2 x^{\frac{1}{2}}} \\
f(x) & =\frac{2 x^{0}}{2 x^{\frac{1}{2}}}+\frac{1 x^{\frac{3}{2}}}{2 x^{\frac{1}{2}}} \\
f(x) & =1 x^{-\frac{1}{2}}+\frac{1}{2} x^{1} \\
f^{\prime}(x) & =-\frac{1}{2} x^{-\frac{1}{2}-1}+\frac{1}{2} x^{1-1} \\
f^{\prime}(x) & =-\frac{1}{2} x^{-\frac{3}{2}}+\frac{1}{2} \\
f^{\prime}(4) & =-\frac{1}{2}(4)^{-\frac{3}{2}}+\frac{1}{2} \\
f^{\prime}(4) & =-\frac{1}{2} \times \frac{1}{(\sqrt{4})^{3}}+\frac{1}{2} \\
f^{\prime}(4) & =-\frac{1}{2} \times \frac{1}{8}+\frac{1}{2} \\
f^{\prime}(4) & =-\frac{1}{16}+\frac{8}{16} \\
\therefore f^{\prime}(4) & =\frac{7}{16}
\end{aligned}
$$

Ex. 1. Find the slope of the tangent to the curve $y=\sqrt{3 x^{3}}$ at the point $P(3,9)$.

$$
\begin{aligned}
y & =\sqrt{3 x^{3}} \\
y & =\sqrt{3} \cdot \sqrt{x^{3}} \\
y & =\sqrt{3} x^{\frac{3}{2}} \\
m_{t} & =\frac{d y}{d x} \\
& =\frac{3}{2} \sqrt{3} x^{\frac{1}{2}}
\end{aligned}
$$

$$
m_{t}=\frac{3 \sqrt{3}}{2} \cdot \sqrt{x}
$$

at $x=3$
$m_{t}=\frac{3 \sqrt{3}}{2} \cdot \sqrt{3} \quad \therefore$ the slope of the

$$
=\frac{9}{2}
$$

Ex. 2. Find the slope of the normal to the curve $y=(\sqrt{x}-2)(3 \sqrt{x}+8)$ at the $x=4$.

$$
\begin{aligned}
y & =(\sqrt{x}-2)(3 \sqrt{x}+8) \\
y & =3 x+2 \sqrt{x}-16 \\
y & =3 x^{\prime}+2 x^{\frac{1}{2}}-16 \\
m_{t} & =\frac{d y}{d x} \\
& =3+x^{-\frac{1}{2}}
\end{aligned}
$$

$$
m_{t}=3+\frac{1}{\sqrt{x}} \quad \text { normal } x=4 \text { the }-\frac{2}{7}
$$

Ex. 3. Find the values of x so that the tangent to the function $y=\frac{3}{\sqrt[3]{x}}$ is parallel to the line

$$
\begin{aligned}
& x+16 y+3=0 \text {. } \\
& x+16 y+3=0 \\
& \frac{16}{16} y=\frac{-1}{16} x-\frac{3}{16} \\
& y=-\frac{1}{16} x-\frac{3}{16} \\
& \text { slope }=-\frac{1}{16} \\
& y=\frac{3}{\sqrt[3]{x}-\frac{1}{3}} \\
& y=d x \\
& m_{t}=\frac{d y}{d x} \\
& =-x^{-\frac{4}{3}} \\
& =-\frac{1}{\sqrt[3]{x^{4}}} \\
& \text { Find } x \text { if } \\
& m_{t}=-\frac{1}{16} \\
& -\frac{1}{\sqrt[3]{x^{4}}}=-\frac{1}{16} \\
& \left(\sqrt[3]{x^{4}}\right)^{3}=(16)^{3} \\
& x^{4}=4096 \\
& x= \pm \sqrt[4]{4096} \\
& x= \pm 8 \\
& \therefore x= \pm 8 \text {. }
\end{aligned}
$$

Ex. 4. Find the equations) of the tangents) to the curve $y=4-x^{2}$ that pass through the following points and illustrate graphically.
a) $(-1,1)$
b) $(-1,3)$
c) $(-1,12)$
a) no tangent can be drawn to the curve $y=4-x^{2}$ through
$(-1,1)$
b) $y=4-x^{2}$ For the $m_{t}=\frac{d y}{d x}$

$$
m_{t}=-2 x
$$

$$
\begin{aligned}
& \text { tangent, } \\
& m_{t}=2 ;(-1,3) ; b= \\
& 3=2(-1)+b \\
& 3=-2+b \\
& 5=b
\end{aligned}
$$

at $x=-1$
$m_{t}=-2(-1)$
$=2$ of the tangent is

$$
y=2 x+5
$$

c) Let $P\binom{x, 4-x^{2}}{x_{1}}$ be the point of tangency through $Q\left(\begin{array}{l}(-1,12) \text {. } \\ x_{2} \\ y_{2}\end{array}\right.$.

For tangent at $x=-4$

$$
\begin{aligned}
& m_{t}=m_{P Q} \\
&-2 x=\frac{12-\left(4-x^{2}\right)}{-1-x} \\
& \frac{-2 x}{1}=\frac{8+x^{2}}{-1-x} \\
&-2 x(-1-x)=1\left(8+x^{2}\right. \\
& 2 x+2 x^{2}=8+x^{2} \\
& x^{2}+2 x-8=0 \\
&(x+4)(x-2)=0 \\
& \therefore x=-4 \text { or } x=2
\end{aligned}
$$

$-2 x(-1-x)=1\left(8+x^{2}\right)$ the tangent at $x=-4$

Follow $\Sigma^{E X} 4$.

