MCV 4UI - Unit 2: Day 1

Date:____

UNIT 2 – DERIVATIVES

Section 4.1 – The Derivative Function

Ex. 1. Find the slope of the tangent to
$$y = \frac{1}{\sqrt{x}}$$
 at any point (x, y) .

			5 -		+				
		+ +	4	-	+ +	-			
			3 -	-	+ +				
			2	_	-				
			1 -						
				_					
		11			1	2	3	4	5
				-					

We say that is the "*derivative*" of $y = \frac{1}{\sqrt{x}}$.

: The *derivative* is an expression for the *slope of the tangent* to a curve.

Notation:

If
$$f(x) = \frac{1}{\sqrt{x}}$$
 then $= \frac{-1}{2\sqrt{x^3}}$ "fprime at x"

If $y = \frac{1}{\sqrt{x}}$ then $= \frac{-1}{2\sqrt{x^3}}$ "dy by dx" or "the derivative of y with respect to x"

If
$$y = \frac{1}{\sqrt{x}}$$
 then $= \frac{-1}{2\sqrt{x^3}}$ "y prime"

Note:
$$\frac{d}{dx}\left(\frac{1}{\sqrt{x}}\right) = \frac{-1}{2\sqrt{x^3}}$$
 reads as "the derivative of $\frac{1}{\sqrt{x}}$ w.r.t. x"

The *derivative* of
$$y = f(x)$$
 is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Ex. 2. Find the derivative of the following functions from *first principles*.

a) $f(x) = x^2$ **b**) $y = \frac{1}{x^2}$

- **Ex. 3.** An object moves in a straight line with its position at time *t* seconds given by $s(t) = 8t t^2$ where *s* is measured in metres.
 - a) Find the *initial* velocity.
 - **b**) Determine when the object is at rest.
 - c) Find the *average* velocity during the third second.

Ex. 4. Show that the derivative of the absolute value function f(x) = |x| does not exist at x = 0. Illustrate your solution graphically.

The Existence of Derivatives

A function f is said to be **differentiable** at a if f'(a) exists. At points where f is not differentiable, we say that the *derivative does not exist*. Three common ways for a derivative to fail to exist are shown.

Ex. 1. From *first principles* find the *derivative* of $y = x^2 - 5x + 1$.

Recall: i) if $f(x) = x^2$ then ii) if $f(x) = x^3$ then iii) if $f(x) = x^4$ then iv) if $f(x) = x^n$ then f'(x) = f'(x)

Recall: $a^2 - b^2 =$ $a^3 - b^3 =$ $a^4 - b^4 =$ $a^n - b^n =$

Ex. 2. From *first principles* find the *derivative* of $f(x) = x^n$

POWER RULE If $y = ax^n$ then $\frac{dy}{dx} =$ **Note:** If y = k, where k is a constant, $\frac{dy}{dx} =$

Ex. 3. Differentiate each function using the **Power Rule**. Use either the *Leibniz notation* $\frac{dy}{dx}$ or the *prime notation* $f^{\xi}(x)$, depending on which is appropriate.

a)
$$y = 4$$
 b) $g(x) = 3x^4 + 12x^3 - 8x + 1$ **c)** $f(x) = \frac{1}{x}$

d)
$$s = \sqrt{t}$$
 e) $y = \left(\frac{x}{2}\right)^2$ **f**) $h(t) = -2(t^2 - 3)^2$

Ex. 4. Find the *equations* of the *tangent* and *normal* to the curve $y = (x-3)^2 - 2$ at x = 5. (Note: The *normal line* is *perpendicular* to the *tangent line* at the point of tangency.)

					1.01								
					10-								
					- 8-		_						
					++	+ +	_	\vdash		_	_	_	
		\vdash			- 6-	+ +	_	\vdash	+	_	_	_	
								\vdash		-	_	-	-
					4-								
					2			\square		_			
					++		_	\vdash		_			
			1 1										
10					++							1	×
-10	-8	-6	-4	-2		2	-		6		3	1	0
-10	-8	-6	-4	-2	-2-	2	-		6		3	1	0
-10	-8	-6	-4	-2	-2-	2			6	~	3	1	0
-10	-8	-6	-4	-2	-2-	2			6		3	1	0
-10		-6	-4	-2	-2	2			6	~			0
-10		-6	4	-2	-2	2			6		<u> </u>		0
	-8		-4	2	-2- -4- -6- -8-						»		0
			-4	-2	- <u>2</u>						<u> </u>		

Ex. 5. Find f'(a) for the given function f(x) at the given value of a.

a)
$$f(x) = \left(1 - \frac{2}{x}\right) \left(3 - \frac{4}{x}\right); a = 1$$

b) $f(x) = \frac{2 + \sqrt{x^3}}{\sqrt{4x}}; a = 4$

Ex. 1. Find the *slope* of the *tangent* to the curve $y = \sqrt{3x^3}$ at the point P (3, 9).

Ex. 2. Find the *slope* of the *normal* to the curve $y = (\sqrt{x} - 2)(3\sqrt{x} + 8)$ at the x = 4.

Ex. 3. Find the values of x so that the tangent to the function $y = \frac{3}{\sqrt[3]{x}}$ is parallel to the line x + 16y + 3 = 0.

Ex. 4. Find the equation(s) of the tangent(s) to the curve $y = 4 - x^2$ that pass through the following points and illustrate graphically. **a)** (-1,1) **b)** (-1,3) **c)** (-1,12)

Ex. 1. Differentiate each function.

a)
$$y = x^3 - 4x^2 + 8$$
 b) $g(x) = \left(\frac{x}{3}\right)^4$ **c)** $f(x) = (x^2 + 3x - 1)(2x + 7)$

Ex. 2. Develop the <u>**PRODUCT RULE</u>** for differentiation from *first principles*. ie. If $f(x) = p(x) \cdot q(x)$, find f'(x).</u>

PRODUCT RULE
If
$$y = f(x) \cdot g(x)$$
 then $\frac{dy}{dx} = f'(x) \cdot g(x) + g'(x) \cdot f(x)$

"The derivative of a product is the derivative of the first times the second, plus the derivative of the second times the first."

Ex. 3. Use the *Product Rule* to differentiate each function. Simplify your answers.

a) $y = (x^2 + 3x - 1)(2x + 7)$ **b)** $s(t) = t^4 \cdot (2t - t^3)$

Ex. 4. Find $\frac{dy}{dx}$ at the given value of x for the function below.

(Note: There is no need to simplify the expression for $\frac{dy}{dx}$ before substituting the given value.) $y = (3-4x^3)(2x+x^2)$ at x = -1

Ex. 5. Find the equation of the *normal line* to the curve $y = (x^3 - 3x + 1)(2x^2 - 5x)$ at x = 1

Ex. 6. Differentiate $y = f(x) \cdot g(x) \cdot h(x)$ with respect to *x*.

 $y = [f(x) \cdot g(x)] \cdot h(x)$

Using the **Product Rule**,

EXTENDED PRODUCT RULE
If
$$y = f(x) \cdot g(x) \cdot h(x)$$
 then
$$\frac{dy}{dx} =$$

Ex. 7. Find the *slope* of the *tangent* to $y = (2x-3)(x^2+1)(x^3-x)$ at x = 1.

Date:

Section 4.4 – THE QUOTIENT RULE

Ex. 1. Use the *limit definition of derivative* to differentiate $f(x) = \frac{2x}{1-x}$.

Ex. 2. Develop the QUOTIENT RULE for derivatives. ie. If $y = \frac{f(x)}{g(x)}$, find $\frac{dy}{dx}$. $y = \frac{f(x)}{g(x)}$ $\therefore y = \frac{f(x)}{g(x)}$, $\frac{y}{1} = \frac{f(x)}{g(x)}$ $\frac{dy}{dx} = \frac{1}{\frac{dy}{dx}}$

Using the product rule,

f'(x) =

$$\frac{dy}{dx} \cdot g(x) =$$
$$\frac{dy}{dx} =$$

"The derivative of a quotient is the derivative of the numerator times the denominator, minus the derivative of the denominator times the numerator, all over the denominator squared."

Ex. 3. Using the *Quotient Rule*, differentiate each function and simplify.

a)
$$f(x) = \frac{2x}{1-x}$$

b) $f(x) = \frac{3x-4}{x^2+5}$

c)
$$y = \frac{1}{x^2 - 4}$$
 d) $y = \frac{(2x - 1)(2x + 1)}{2 + x}$

Ex. 4. Find the *slope* of the *tangent line* to the curve $y = \frac{x^3}{x^2 - 6}$ at x = 3. Illustrate graphically.

Graph
$$y = \frac{x^3}{x^2 - 6}$$
.

Ex. 5. Find the *equation* of the *normal line* to the curve $y = \frac{4x-1}{2x+3}$ at x = -1. Illustrate graphically.

Ex. 6. Find the *point(s)* where the *tangent line* to the curve $f(x) = \frac{x^2 - 1}{x^2 + 1}$ is *horizontal*. Illustrate graphically.

Date:

Section 4.4 – THE POWER OF A FUNCTION RULE

Extended Product Rule: If $y = f(x) \cdot g(x) \cdot h(x)$ then $\frac{dy}{dx} =$

Ex. 1. Differentiate each of the following using the Product Rules and Power Rule.

a)
$$y = (3x^3 - 2x^2 - 1)^3$$

Solution:
 $y = (3x^3 - 2x^2 - 1) \cdot (3x^3 - 2x^2 - 1) \cdot (3x^3 - 2x^2 - 1)$
 $\frac{dy}{dx} = (9x^2 - 4x) \cdot (3x^3 - 2x^2 - 1)^2 + (9x^2 - 4x) \cdot (3x^3 - 2x^2 - 1)^2 + (9x^2 - 4x) \cdot (3x^3 - 2x^2 - 1)^2$
 $\frac{dy}{dx} = 3(9x^2 - 4x)(3x^3 - 2x^2 - 1)^2$
 $\therefore \frac{dy}{dx} = 3(3x^3 - 2x^2 - 1)^2(9x^2 - 4x)$

b)
$$y = [f(x)]^4$$

Solution:
 $y = [f(x) \cdot f(x) \cdot f(x)]^4$

$$y = [f(x) \cdot f(x) \cdot f(x)] \cdot f(x)$$

$$\frac{dy}{dx} = [f'(x) \cdot [f(x)]^2 + f'(x) \cdot [f(x)]^2 + f'(x) \cdot [f(x)]^2] \cdot f(x) + f'(x) \cdot [f(x)]^3$$

$$\frac{dy}{dx} = 3f'(x) \cdot [f(x)]^2 \cdot f(x) + f'(x) \cdot [f(x)]^3$$
$$\frac{dy}{dx} = 3f'(x) \cdot [f(x)]^3 + f'(x) \cdot [f(x)]^3$$
$$\therefore \frac{dy}{dx} = 4[f(x)]^3 \cdot f'(x)$$

POWER OF A FUNCTION RULE: If $y = [f(x)]^n$ then $\frac{dy}{dx} =$ If $y = au^n$ then $\frac{dy}{dx} =$

Ex. 2. Differentiate each of the following using the Power of a Function Rule.

a)
$$y = [f(x)]^4$$

b) $y = (3x^3 - 2x^2 - 1)^3$

POWER OF A FUNCTION RULE

If
$$y = a[f(x)]^n$$
 then $\frac{dy}{dx} =$

Ex. 2. Use the Power Rule or Power of a Function Rule to find the derivative.

a)
$$f(x) = \left(\frac{3}{2x}\right)^2 - \frac{1}{x^3} + \frac{1}{x}$$
 b) $y = (2x+1)^6$

c)
$$f(x) = (-x^4 - \pi^4)^4$$

d) $y = [(3-x)^3 - x]^2$

e)
$$y = \frac{1}{\sqrt{2x-1}}$$
 f) $g(x) = \frac{-3}{x^2 - 4}$

Ex. 3. Use the **Power Rule, Power of a Function Rule** and **Product Rule** to differentiate each function. Express your answer in *simplified factored form*. **a)** $s = t^4 (1-4t^2)^3$

b)
$$f(x) = (2x-1)^5 (2-3x)^3$$

c)
$$y = \frac{(3-x)^2}{(3x-2)^3}$$

d)
$$y = \sqrt[3]{\frac{1+x^2}{1-2x^2}}$$

HW: p. 158 #2 to 4 all parts

MCV 4UI - Unit 2: Day 7

Date:_

Section 4.6 – THE CHAIN RULE

If
$$y = au^n$$
 then $\frac{dy}{dx} =$

Ex. 1. Find the rate of change of $f(t) = \left(\frac{\pi - t}{6\pi + t}\right)^{\frac{1}{3}}$ at $t = 2\pi$.

Ex. 2. The radius of a circular oil slick on a body of water is increasing at a rate of 2 m/min. Find the *rate of change of area* of the oil slick when its radius is 50 m.

THE CHAIN RULE IN LEIBNIZ NOTATION

If y is a function of u and u is a function of x, then	If y is a function of u and u is a function of v and v is a function of x , then
$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$	$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$

Ex. 3. Use the *chain rule* to find $\frac{dy}{dx}$ at x = 1 if $y = 2u^3 + 3u^2$ and $u = x + \frac{1}{\sqrt{x}}$.

Ex. 4. Use the *chain rule* to find $\frac{dy}{dx}$ at x = 4 if $y = \frac{12}{(1+2u)^3}$, $u = 1 - \frac{2}{v^2}$ and $v = 2x - 3\sqrt{x}$.

THE CHAIN RULE FOR A COMPOSITE FUNCTION

If
$$y = f(g(x))$$
 then $\frac{dy}{dx} = f'(g(x)) \cdot g'(x)$

"The derivative of a composite function is the derivative of the outer function with respect to the inner function times the derivative of the inner function with respect to x."

Ex. 5. Let
$$y = g(h(x))$$
 where $h(x) = \frac{x^2}{x+2}$. If $g'\left(\frac{9}{5}\right) = -2$, find $\frac{dy}{dx}$ when $x = 3$.

HW: p. 159 #5a, 6 to 10, 12 to 15; REVIEW for TEST: p. 163 #2 to 20; p. 166 #3 to 11