MCV 4UI - Unit 2: Day 1
Date: \qquad

UNIT 2 - DERIVATIVES

Section 4.1 - The Derivative Function

Ex. 1. Find the slope of the tangent to $y=\frac{1}{\sqrt{x}}$ at any point (x, y).

We say that is the "derivative" of $y=\frac{1}{\sqrt{x}}$.
\therefore The derivative is an expression for the slope of the tangent to a curve.

Notation:

If $f(x)=\frac{1}{\sqrt{x}}$ then $\quad=\frac{-1}{2 \sqrt{x^{3}}}$ "f prime at x "

If $y=\frac{1}{\sqrt{x}} \quad$ then $\quad=\frac{-1}{2 \sqrt{x^{3}}}$ "dy by $d x$ " or "the derivative of y with respect to x "

If $y=\frac{1}{\sqrt{x}} \quad$ then $\quad=\frac{-1}{2 \sqrt{x^{3}}} \quad$ "y prime"
Note: $\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)=\frac{-1}{2 \sqrt{x^{3}}}$ reads as "the derivative of $\frac{1}{\sqrt{x}}$ w.r.t. \boldsymbol{x} "

The derivative of $y=f(x)$ is:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Ex. 2. Find the derivative of the following functions from first principles.
a) $f(x)=x^{2}$
b) $y=\frac{1}{x^{2}}$

Ex. 3. An object moves in a straight line with its position at time t seconds given by $s(t)=8 t-t^{2}$ where s is measured in metres.
a) Find the initial velocity.
b) Determine when the object is at rest.
c) Find the average velocity during the third second.

Ex. 4. Show that the derivative of the absolute value function $f(x)=|x|$ does not exist at $x=0$. Illustrate your solution graphically.

The Existence of Derivatives

A function f is said to be differentiable at a if $f^{\prime}(a)$ exists. At points where f is not differentiable, we say that the derivative does not exist. Three common ways for a derivative to fail to exist are shown.

Cusp

Vertical Tangent

Discontinuity

Ex. 1. From first principles find the derivative of $y=x^{2}-5 x+1$.

Recall: i) if $f(x)=x^{2}$ then

$$
f^{\prime}(x)=
$$

ii) if $f(x)=x^{3}$ then $f^{\prime}(x)=$
iii) if $f(x)=x^{4}$ then $f^{\prime}(x)=$
iv) if $f(x)=x^{n}$ then $f^{\prime}(x)=$

Recall: $a^{2}-b^{2}=$
$a^{3}-b^{3}=$
$a^{4}-b^{4}=$

$$
a^{n}-b^{n}=
$$

Ex. 2. From first principles find the derivative of $f(x)=x^{n}$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \longrightarrow h$
$=\lim _{h \rightarrow 0} \longrightarrow$
$=$
$=$
$=$

POWER RULE

If $y=a x^{n}$ then $\frac{d y}{d x}=$

Ex. 3. Differentiate each function using the Power Rule. Use either the Leibniz notation $\frac{d y}{d x}$ or the prime notation $f(x)$, depending on which is appropriate.
a) $y=4$
b) $g(x)=3 x^{4}+12 x^{3}-8 x+1$
c) $f(x)=\frac{1}{x}$
d) $s=\sqrt{t}$
e) $y=\left(\frac{x}{2}\right)^{2}$
f) $h(t)=-2\left(t^{2}-3\right)^{2}$

Ex. 4. Find the equations of the tangent and normal to the curve $y=(x-3)^{2}-2$ at $x=5$. (Note: The normal line is perpendicular to the tangent line at the point of tangency.)

Ex. 5. Find $f^{\prime}(a)$ for the given function $f(x)$ at the given value of a.
a) $f(x)=\left(1-\frac{2}{x}\right)\left(3-\frac{4}{x}\right) ; a=1$
b) $f(x)=\frac{2+\sqrt{x^{3}}}{\sqrt{4 x}} ; a=4$

Ex. 1. Find the slope of the tangent to the curve $y=\sqrt{3 x^{3}}$ at the point $P(3,9)$.

Ex. 2. Find the slope of the normal to the curve $y=(\sqrt{x}-2)(3 \sqrt{x}+8)$ at the $x=4$.

Ex. 3. Find the values of x so that the tangent to the function $y=\frac{3}{\sqrt[3]{x}}$ is parallel to the line $x+16 y+3=0$.

Ex. 4. Find the equation(s) of the tangent(s) to the curve $y=4-x^{2}$ that pass through the following points and illustrate graphically.
a) $(-1,1)$
b) $(-1,3)$
c) $(-1,12)$

MCV 4UI - Unit 2: Day 4

Date:

\qquad

Section 4.3 - THE PRODUCT RULE

POWER RULE

If $y=a x^{n}$ then $\frac{d y}{d x}=$

Ex. 1. Differentiate each function.
a) $y=x^{3}-4 x^{2}+8$
b) $g(x)=\left(\frac{x}{3}\right)^{4}$
c) $f(x)=\left(x^{2}+3 x-1\right)(2 x+7)$

Ex. 2. Develop the PRODUCT RULE for differentiation from first principles.
ie. If $f(x)=p(x) \cdot q(x)$, find $f^{\prime}(x)$.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \longrightarrow h$
$=\lim _{h \rightarrow 0} \longrightarrow \quad h$

$=\lim _{h \rightarrow 0}[\quad h]+\lim _{h \rightarrow 0}\left[\quad \cdot \frac{h}{h}\right]$
$=\lim _{h \rightarrow 0} \quad \cdot \lim _{h \rightarrow 0} \longrightarrow+\lim _{h \rightarrow 0} \quad \cdot \lim _{h \rightarrow 0} \longrightarrow \quad h$
$=$
$=$

PRODUCT RULE

$$
\text { If } y=f(x) \cdot g(x) \text { then } \frac{d y}{d x}=f^{\prime}(x) \cdot g(x)+g^{\prime}(x) \cdot f(x)
$$

"The derivative of a product is the derivative of the first times the second, plus the derivative of the second times the first."

Ex. 3. Use the Product Rule to differentiate each function. Simplify your answers.
a) $y=\left(x^{2}+3 x-1\right)(2 x+7)$
b) $s(t)=t^{4} \cdot\left(2 t-t^{3}\right)$

Ex. 4. Find $\frac{d y}{d x}$ at the given value of x for the function below.
(Note: There is no need to simplify the expression for $\frac{d y}{d x}$ before substituting the given value.)

$$
y=\left(3-4 x^{3}\right)\left(2 x+x^{2}\right) \text { at } x=-1
$$

Ex. 5. Find the equation of the normal line to the curve $y=\left(x^{3}-3 x+1\right)\left(2 x^{2}-5 x\right)$ at $x=1$

Ex. 6. Differentiate $y=f(x) \cdot g(x) \cdot h(x)$ with respect to x.

$$
y=[f(x) \cdot g(x)] \cdot h(x)
$$

Using the Product Rule,

$$
\frac{d y}{d x}=[\quad] \cdot h(x)+h^{\prime}(x) \cdot[
$$

EXTENDED PRODUCT RULE

If $y=f(x) \cdot g(x) \cdot h(x)$ then
$\frac{d y}{d x}=$

Ex. 7. Find the slope of the tangent to $y=(2 x-3)\left(x^{2}+1\right)\left(x^{3}-x\right)$ at $x=1$.

Power Rule: If $y=a x^{n}$ then $\frac{d y}{d x}=$
Product Rule: If $y=f(x) \cdot g(x)$ then $\frac{d y}{d x}=$
Extended Product Rule: If $y=f(x) \cdot g(x) \cdot h(x)$ then

$$
\frac{d y}{d x}=
$$

Ex. 1. Use the limit definition of derivative to differentiate $f(x)=\frac{2 x}{1-x}$.

Ex. 2. Develop the QUOTIENT RULE for derivatives. ie. If $y=\frac{f(x)}{g(x)}$, find $\frac{d y}{d x}$.

$$
\begin{aligned}
y & =\frac{f(x)}{g(x)} \\
\frac{y}{1} & =\frac{f(x)}{g(x)}
\end{aligned}
$$

$$
\because y=\frac{f(x)}{g(x)}
$$

$$
f(x)=y \cdot g(x)
$$

$$
\frac{d y}{d x}=
$$

$$
\frac{d y}{d x}=\square
$$

Using the product rule,

$$
f^{\prime}(x)=
$$

$\frac{d y}{d x} \cdot g(x)=$

$$
\frac{d y}{d x}=\square
$$

QUOTIENT RULE

If $y=\frac{f(x)}{g(x)}$ then

$$
\frac{d y}{d x}=\frac{f^{\prime}(x) \cdot g(x)-g^{\prime}(x) \cdot f(x)}{[g(x)]^{2}}
$$

"The derivative of a quotient is the derivative of the numerator times the denominator, minus the derivative of the denominator times the numerator, all over the denominator squared."

Ex. 3. Using the Quotient Rule, differentiate each function and simplify.
a) $f(x)=\frac{2 x}{1-x}$
b) $f(x)=\frac{3 x-4}{x^{2}+5}$
c) $y=\frac{1}{x^{2}-4}$
d) $y=\frac{(2 x-1)(2 x+1)}{2+x}$

Ex. 4. Find the slope of the tangent line to the curve $y=\frac{x^{3}}{x^{2}-6}$ at $x=3$. Illustrate graphically.

Graph $y=\frac{x^{3}}{x^{2}-6}$.

Ex. 5. Find the equation of the normal line to the curve $y=\frac{4 x-1}{2 x+3}$ at $x=-1$.
Illustrate graphically.

Ex. 6. Find the point(s) where the tangent line to the curve $f(x)=\frac{x^{2}-1}{x^{2}+1}$ is horizontal. Illustrate graphically.

\qquad Section 4.4 - THE POWER OF A FUNCTION RULE

Power Rule: If $y=a x^{n}$ then $\frac{d y}{d x}=$
Product Rule: If $y=f(x) \cdot g(x)$ then $\frac{d y}{d x}=$

Extended Product Rule: If $y=f(x) \cdot g(x) \cdot h(x)$ then

$$
\frac{d y}{d x}=
$$

Ex. 1. Differentiate each of the following using the Product Rules and Power Rule.

$$
\text { a) } y=\left(3 x^{3}-2 x^{2}-1\right)^{3}
$$

Solution:

$$
\begin{aligned}
y & =\left(3 x^{3}-2 x^{2}-1\right) \cdot\left(3 x^{3}-2 x^{2}-1\right) \cdot\left(3 x^{3}-2 x^{2}-1\right) \\
\frac{d y}{d x} & =\left(9 x^{2}-4 x\right) \cdot\left(3 x^{3}-2 x^{2}-1\right)^{2}+\left(9 x^{2}-4 x\right) \cdot\left(3 x^{3}-2 x^{2}-1\right)^{2}+\left(9 x^{2}-4 x\right) \cdot\left(3 x^{3}-2 x^{2}-1\right)^{2} \\
\frac{d y}{d x} & =3\left(9 x^{2}-4 x\right)\left(3 x^{3}-2 x^{2}-1\right)^{2} \\
\therefore \frac{d y}{d x} & =3\left(3 x^{3}-2 x^{2}-1\right)^{2}\left(9 x^{2}-4 x\right) \\
\text { b) } y & =[f(x)]^{4}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
y & =[f(x) \cdot f(x) \cdot f(x)] \cdot f(x) \\
\frac{d y}{d x} & =\left[f^{\prime}(x) \cdot[f(x)]^{2}+f^{\prime}(x) \cdot[f(x)]^{2}+f^{\prime}(x) \cdot[f(x)]^{2}\right] \cdot f(x)+f^{\prime}(x) \cdot[f(x)]^{3} \\
\frac{d y}{d x} & =3 f^{\prime}(x) \cdot[f(x)]^{2} \cdot f(x)+f^{\prime}(x) \cdot[f(x)]^{3} \\
\frac{d y}{d x} & =3 f^{\prime}(x) \cdot[f(x)]^{3}+f^{\prime}(x) \cdot[f(x)]^{3} \\
\therefore \frac{d y}{d x} & =4[f(x)]^{3} \cdot f^{\prime}(x)
\end{aligned}
$$

POWER OF A FUNCTION RULE: If $y=[f(x)]^{n}$ then $\frac{d y}{d x}=$

$$
\text { If } y=a u^{n} \quad \text { then } \frac{d y}{d x}=
$$

Ex. 2. Differentiate each of the following using the Power of a Function Rule.
a) $y=[f(x)]^{4}$
b) $y=\left(3 x^{3}-2 x^{2}-1\right)^{3}$

Ex. 2. Use the Power Rule or Power of a Function Rule to find the derivative.
a) $f(x)=\left(\frac{3}{2 x}\right)^{2}-\frac{1}{x^{3}}+\frac{1}{x}$
b) $y=(2 x+1)^{6}$
c) $f(x)=\left(-x^{4}-\pi^{4}\right)^{4}$
d) $y=\left[(3-x)^{3}-x\right]^{2}$
e) $y=\frac{1}{\sqrt{2 x-1}}$
f) $g(x)=\frac{-3}{x^{2}-4}$

Ex. 3. Use the Power Rule, Power of a Function Rule and Product Rule to differentiate each function. Express your answer in simplified factored form.
a) $s=t^{4}\left(1-4 t^{2}\right)^{3}$
b) $f(x)=(2 x-1)^{5}(2-3 x)^{3}$
c) $y=\frac{(3-x)^{2}}{(3 x-2)^{3}}$
d) $y=\sqrt[3]{\frac{1+x^{2}}{1-2 x^{2}}}$

Date:

\qquad

Section 4.6 - THE CHAIN RULE

$$
\begin{aligned}
& \text { If } y=a x^{n} \quad \text { then } \frac{d y}{d x}= \\
& \text { If } y=a[f(x)]^{n} \text { then } \frac{d y}{d x}= \\
& \text { If } y=a u^{n} \quad \text { then } \frac{d y}{d x}=
\end{aligned}
$$

Ex. 1. Find the rate of change of $f(t)=\left(\frac{\pi-t}{6 \pi+t}\right)^{\frac{1}{3}}$ at $t=2 \pi$.

Ex. 2. The radius of a circular oil slick on a body of water is increasing at a rate of $2 \mathrm{~m} / \mathrm{min}$. Find the rate of change of area of the oil slick when its radius is 50 m .

If y is a function of u and u is a function of x, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

If y is a function of u and u is a function of v and v is a function of x, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x}
$$

Ex. 3. Use the chain rule to find $\frac{d y}{d x}$ at $x=1$ if $y=2 u^{3}+3 u^{2}$ and $u=x+\frac{1}{\sqrt{x}}$.

Ex. 4. Use the chain rule to find $\frac{d y}{d x}$ at $x=4$ if $y=\frac{12}{(1+2 u)^{3}}, u=1-\frac{2}{v^{2}}$ and $v=2 x-3 \sqrt{x}$.

$$
\text { If } y=f(g(x)) \text { then } \frac{d y}{d x}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

'The derivative of a composite function is the derivative of the outer function with respect to the inner function times the derivative of the inner function with respect to x."

Ex. 5. Let $y=g(h(x))$ where $h(x)=\frac{x^{2}}{x+2}$. If $g^{\prime}\left(\frac{9}{5}\right)=-2$, find $\frac{d y}{d x}$ when $x=3$.

