## <u>Section 4.3 – THE PRODUCT RULE</u>



**POWER RULE** If  $y = ax^n$  then  $\frac{dy}{dx} = \pi a \chi^{n-1}$ 

Ex. 1. Differentiate each function.

MCV 4UI - Unit 2: Day 4 Date: <u>Fe.b.</u> 24/14

a) 
$$y = x^{3} - 4x^{2} + 8$$
  
 $dy = 3x^{2} - 8x$   
 $dy = \frac{3}{2}x^{2} - 8x$   
 $g'(x) = \frac{4}{8!}x$   
 $g'(x) = \frac{4}{8!}x$   
 $g'(x) = \frac{4}{8!}x$   
 $f'(x) = (x^{2} + 3x - 1)(2x + 7)$   
 $f(x) = (x^{2} + 3x^{2} - 1)(2x + 7)$   
 $f(x) = 2x^{3} + 7x^{2} + 6x^{2} + 21x - 2x^{-7}$   
 $f'(x) = 2x^{3} + 13x^{2} + 19x - 7$   
 $f'(x) = 6x^{2} + 26x + 19$ 

**Ex. 2.** Develop the <u>**PRODUCT RULE</u>** for differentiation from *first principles*. ie. If  $f(x) = p(x) \cdot q(x)$ , find f'(x).</u>

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{p(x+h) \cdot q(x+h) - p(x) \cdot q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{p(x+h) \cdot p(x+h) - p(x)}{h} + \frac{p(x) \cdot q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{q(x+h) \cdot p(x+h) - p(x)}{h} + \frac{p(x) \cdot q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{q(x+h) \cdot p(x+h) - p(x)}{h} + \frac{p(x) \cdot q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{q(x+h) \cdot p(x+h) - p(x)}{h} + \lim_{h \to 0} \frac{p(x) \cdot q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{q(x+h) \cdot p(x+h) - p(x)}{h} + \lim_{h \to 0} \frac{p(x) \cdot q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{q(x+h) \cdot p(x+h) - p(x)}{h} + \lim_{h \to 0} p(x) \cdot \frac{q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} q(x+h) \cdot \frac{p(x+h) - p(x)}{h} + \lim_{h \to 0} p(x) \cdot \frac{q(x+h) - q(x)}{h}$$
  

$$= \lim_{h \to 0} q(x+h) \cdot \frac{p(x+h) - p(x)}{h} + \lim_{h \to 0} p(x) \cdot \frac{1}{h}$$
  

$$= \lim_{h \to 0} q(x+h) - \frac{q(x)}{h} + \frac{1}{h} + \lim_{h \to 0} p(x) + \frac{1}{h} + \frac{1}{h} = \frac{q(x) \cdot p'(x)}{h} + \frac{q'(x) \cdot q(x)}{h} + \frac{1}{h} + \frac{1}{h} = \frac{p'(x) \cdot q(x) + q'(x) \cdot p(x)}{h}$$

**PRODUCT RULE**  
If 
$$y = f(x) \cdot g(x)$$
 then  $\frac{dy}{dx} = f'(x) \cdot g(x) + g'(x) \cdot f(x)$ 

"The derivative of a product is the derivative of the first times the second, plus the derivative of the second times the first."

Ex. 3. Use the *Product Rule* to differentiate each function. Simplify your answers.

a) 
$$y = (x^{2} + 3x - 1)(2x + 7)$$
  
 $dy = (2x + 3) \cdot (2x + 7) + 2 \cdot (x^{2} + 3x - 1)$   
 $= 4x^{2} + 20x + 21 + 2x^{2} + 6x - 2$   
 $f \cdot dy = 6x^{2} + 26x + 19$   
b)  $s(t) = t^{4} \cdot (2t - t^{3})$   
 $s'(t) = 4t^{3} \cdot (2t - t^{3}) + (2 - 3t^{2}) + 4$   
 $s'(t) = 8t^{4} - 4t^{6} + 2t^{4} - 3t^{6}$   
 $\therefore s'(t) = 10t^{4} - 7t^{6}$ 

**Ex. 4.** Find  $\frac{dy}{dx}$  at the given value of x for the function below.

(Note: There is no need to simplify the expression for  $\frac{dy}{dx}$  before substituting the given value.)

$$y = (3 - 4x^{3})(2x + x^{2}) \text{ at } x = -1$$

$$\frac{dy}{dx} = -12\chi^{2}(xx + \chi^{2}) + (2 + 2\chi)(3 - 4\chi^{3})$$

$$a + \chi = -1$$

$$\frac{dy}{dx} = (-12)(-1) + (0)(7)$$

$$= 12$$

$$\therefore \frac{dy}{dx} = 12 \quad \text{at } \chi = -1$$

**Ex. 5.** Find the equation of the *normal line* to the curve  $y = (x^3 - 3x + 1)(2x^2 - 5x)$  at x = 1

$$y = (x^{2} - 3x + 1) \cdot (2x^{2} - 5x)$$
  

$$dy = (3x^{2} - 3) \cdot (2x^{2} - 5x) + (4x - 5) \cdot (x^{3} - 3x + 1)$$
  

$$at x = 1$$
  

$$dy = (0)(-3) + (-1)(-1)$$
  

$$m = -1 \quad j \quad (1, 3); b = --$$
  

$$m = -1 \quad j \quad (1, 3); b = --$$
  

$$3 = -1(1) + b$$
  

$$3 = -1 + b$$
  

$$4 = -x + 4 \text{ or } x + y - 4 = 0$$

Ex. 6. Differentiate 
$$y = f(x) \cdot g(x) \cdot h(x)$$
 with respect to x.  

$$y = [f(x) \cdot g(x)] \cdot h(x)$$
Using the Product Rule,  

$$\frac{dy}{dx} = [f'(x) \cdot g(x) + g'(x) \cdot f(x)] \cdot h(x) + h'(x) \cdot [f(x) \cdot g(x)]$$

$$= f'(x) \cdot g(x) \cdot h(x) + g'(x) \cdot f(x) \cdot h(x) + h'(x) \cdot f(x) \cdot g(x)$$

EXTENDED PRODUCT RULE  
If 
$$y = f(x) \cdot g(x) \cdot h(x)$$
 then  

$$\frac{dy}{dx} = f'(x) \cdot g(x) \cdot h(x) + g'(x) \cdot f(x) \cdot h(x) + h'(x) \cdot f(x) \cdot g(x)$$

**Ex. 7.** Find the *slope* of the *tangent* to  $y = (2x-3)(x^2+1)(x^3-x)$  at x = 1.

$$y = (ax-3) \cdot (x^{2}+1) \cdot (x^{3}-x)$$
  

$$m_{t} = \frac{dy}{dx}$$
  

$$= 2 \cdot (x^{2}+1)(x^{3}-x) + 2x \cdot (ax-3)(x^{3}-x) + (3x^{2}-1) \cdot (ax-3)(x^{2}+1)$$
  

$$at x = 1$$
  

$$m_{t} = 2(2)(0) + (2)(-1)(0) + (2)(-1)(2)$$
  

$$= -4$$
  

$$\therefore at x = 1, \text{ the slope of the tangent is } -4.$$

MCV 4UI-Unit 2: Day 5  
Date: 
$$f = b \cdot 365/14$$
  
Power Rule: If  $y = ax^n$  then  $\frac{dy}{dx} = \pi \alpha x^{n-1}$   
Product Rule: If  $y = f(x) \cdot g(x)$  then  $\frac{dy}{dx} = f'(x) \cdot g(x) + g'(x) \cdot f(x)$   
Extended Product Rule: If  $y = f(x) \cdot g(x)$  then  
 $\frac{dy}{dx} = f'(x) \cdot g(x) \cdot h(x) + g'(x) \cdot f(x) \cdot h(x) + h'(x) \cdot f(x) \cdot g(x)$   
Ex. 1. Use the limit definition of derivative to differentiate  $f(x) = \frac{2x}{1-x}$ .  
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$   
 $= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} - \frac{2x}{1-x}$  (1- $\chi$ -h)(1- $\chi$ )  
 $= \lim_{h \to 0} \frac{f(x+h)(1-\chi) - 2x(1-\chi-h)}{h}$  then  
 $f'(x) = \frac{2x}{(1-\chi)^2}$ 

**Ex. 2.** Develop the **QUOTIENT RULE** for derivatives. ie. If  $y = \frac{f(x)}{g(x)}$ , find  $\frac{dy}{dx}$ .

$$y = \frac{f(x)}{g(x)}$$
  

$$\frac{y}{1} \neq \frac{f(x)}{g(x)}$$
  

$$\frac{y}{1} \neq \frac{f(x)}{g(x)}$$
  

$$f(x) = y \cdot g(x)$$
  
Using the product rule,  

$$f'(x) = \frac{dy}{dx} \cdot g'(x) + g'(x) \cdot y$$
  

$$\frac{dy}{dx} = \frac{f'(x) - g'(x) \cdot f(x)}{g(x)} + \frac{f'(x) \cdot y}{g(x)} + \frac{f'(x) - g'(x) \cdot f(x)}{g(x)} + \frac{f'(x) - g'(x) \cdot f(x)}{g(x$$

QUOTIENT RULE  
If 
$$y = \frac{f(x)}{g(x)}$$
 then  
 $\frac{dy}{dx} = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}$ 

"The derivative of a quotient is the derivative of the numerator times the denominator, minus the derivative of the denominator times the numerator, all over the denominator squared."

## **Ex. 3.** Using the *Quotient Rule*, differentiate each function and simplify. 2r

a) 
$$f(x) = \frac{2x}{1-x}$$
  
b)  $f(x) = \frac{3x-4}{x^2+5}$   
 $f'(x) = \frac{2 \cdot (1-x) - (-1) \cdot 2x}{(1-x)^2}$   
 $f'(x) = \frac{2 - 2x + 2x}{(1-x)^2}$   
 $f'(x) = \frac{2 - 2x + 2x}{(1-x)^2}$   
 $f'(x) = \frac{3x(x^2+5) - 2x \cdot (3x-4)}{(x^2+5)^2}$   
 $f'(x) = \frac{3x(x^2+5) - 2x \cdot (3x-4)}{(x^2+5)^2}$ 

c) 
$$y = \frac{1}{x^2 - 4}$$
  
 $\frac{dy}{dx} = \frac{0 \cdot (\chi^2 - 4) - \lambda \chi \cdot 1}{(\chi^2 - 4)^2}$   
 $\frac{dy}{dx} = \frac{-2\chi}{(\chi^2 - 4)^2}$ 

d) 
$$y = \frac{(2x-1)(2x+1)}{2+x}$$
  
 $y = \frac{4x^2-1}{2+x}$   
 $\frac{dy}{dx} = \frac{8x \cdot (2+x) - 1(4x^2-1)}{(2+x)^2}$   
 $\frac{dy}{dx} = \frac{16x + 8x^2 - 4x^2 + 1}{(2+x)^2}$   
 $\frac{dy}{dx} = \frac{4x^2 + 16x + 1}{(x+2)^2}$ 

**Ex. 4.** Find the *slope* of the *tangent line* to the curve  $y = \frac{x^3}{x^2 - 6}$  at x = 3.







