Date: \qquad Mar. $5 / 14$

UNIT 3 - APPLICATIONS OF DERIVATIVES -Part A
Section 5.1 - IMPLICIT DIFFERENTIATION
So far we have dealt with curves that are defined by an equation of the form $y=f(x)$ in which y is defined "explicitly" in terms of x. Examples are $y=x^{2}+2 x$ and $y=\frac{1}{1-\sqrt{x}}$.

However, curves may also be defined "implicitly" by a relation where y is not given explicitly in terms of x. Examples are $x^{2}+y^{2}=25$ and $x y-1=0$.

Ex. 1. If y is a function of x, find an expression for each derivative in terms of x, y and $\frac{d y}{d x}$.

$$
\text { a) } \begin{aligned}
& \frac{d}{d x}\left(x^{2}+y^{2}\right) \\
= & 2 x+2 y^{\prime} \frac{d y}{d x}
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \frac{d}{d x}\left(x y^{3}\right) \\
= & \frac{d}{d x}\left(x \cdot y^{3}\right) \\
= & 1 \cdot y^{3}+3 y^{2} \frac{d y}{d x} \cdot x \\
= & y^{3}+3 x y^{2} \frac{d y}{d x}
\end{aligned}
$$

Ex. 2. Find the equation of the tangent line to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ at the point $\left(4, \frac{12}{5}\right)$. Leave your answer in $y=m x+b$ form and illustrate your solution graphically.

$$
\frac{x^{2}}{25}+\frac{y^{2}}{16}=1
$$

mut. by 40^{0}

$$
\begin{aligned}
& 16 x^{2}+25 y^{2}=400 \\
& \text { differentiate w.r.t. "x }
\end{aligned}
$$

 the required tangent is

$$
\begin{aligned}
& \text { For } x \text { int }(s), y=0 \\
& \begin{array}{c}
\frac{x^{2}}{25}=1 \\
x^{2}=25 \\
x= \pm 5 \\
\text { For } y-i n t(s), x=0 \\
\frac{y_{2}}{16}=1 \\
y^{2}=16 \\
y= \pm 4
\end{array}
\end{aligned}
$$

$$
y=-\frac{16}{15} x+\frac{20}{3}
$$

$$
\begin{aligned}
& 32 x^{\prime}+50 y^{\prime} \frac{d y}{d x}=0 \\
& 50 y \frac{d y}{d x}=-32 x \\
& \frac{d y}{d x}=\frac{-16 x}{25 y} \\
& \therefore m_{t}=\frac{-16 x}{25 y} \\
& \text { at } x=4, y=\frac{12}{5} \\
& m_{t}=\frac{-16(4) 1}{525\left(\frac{15}{51}\right)^{3}} \\
& =-\frac{16}{15} \\
& \text { For the tangent } \\
& m_{t}=\frac{-16}{15} ;\left(4, \frac{12}{5}\right) \\
& \begin{array}{l}
\text { Find } b \\
\frac{12}{5}=-\frac{16}{15}(4)+b
\end{array} \\
& \frac{36}{15}=\frac{-64}{15}+b \\
& \frac{100}{15}=b \\
& \frac{20}{3}=b \\
& \therefore \text { the equation of }
\end{aligned}
$$

Ex. 3. Find $\frac{d y}{d x}$ in terms of x and y, using implicit differentiation.

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
x^{2}-x^{\prime} y+2 y^{2}=4 \\
\text { Diff. w.r.t. } x \\
2 x^{\prime}-1 \cdot y+\frac{d y}{d x}(-x)+4 y^{\prime} \frac{d y}{d x}=0 \\
2 x-y-x \frac{d y}{d x}+4 y \frac{d y}{d x}=0 \\
4 y \frac{d y}{d x}-x \frac{d y}{d x}=y-2 x \\
\frac{d y}{d x}(4 y-x)=y-2 x \\
\frac{d y}{d x}=\frac{y-2 x}{4 y-x} \cdot \frac{-1}{-1} \\
\text { or } \\
\frac{d y}{d x}=\frac{2 x-y}{x-4 y}
\end{array}
\end{aligned}
$$

$$
\text { b) } 2 x y+x^{2}=4-y^{2}
$$

$$
\begin{gathered}
2 y+\frac{d y}{d x} \cdot 2 x+2 x=-2 y^{\prime} \frac{d y}{d x} \\
y+\frac{x}{d x}+x=-y \frac{d y}{d x} \\
x \frac{d y}{d x}+y \frac{d y}{d x}=-x-y \\
\frac{d y}{d x}(x+y)=-x-y \\
\frac{d y}{d x}=\frac{-x-y}{x+y} \\
d y=\frac{-(x+y)}{(x+y)} \text { or }-1
\end{gathered}
$$

Ex. 4. For each of the following, find the indicated derivative using implicit differentiation.

$$
\begin{aligned}
& \text { a) } 4 h^{2}+r^{2}=25 \text {; find } D_{r} h \text { or } \frac{d h}{d r} \\
& \text { Diff. w.r.t "r" } \\
& 8 h^{\prime} \frac{d h}{d r}+2 r^{\prime}=0 \\
& \frac{d h}{d r}=\frac{-2 r}{8 h} \\
& \frac{d h}{d r}=\frac{-r}{4 h} \\
& \therefore D_{r} h=\frac{-r}{4 h}
\end{aligned}
$$

Ex. 5. Show that, if $15 x=15 y+5 y^{3}+3 y^{5}$, then $\frac{d y}{d x}=\left(1+y^{2}+y^{4}\right)^{-1}$.

$$
\begin{aligned}
& 15 x=15 y+5 y^{3}+3 y^{5} \\
& \text { diff. w.r.t }
\end{aligned}
$$

$$
\operatorname{lb}_{15}^{\log } 1=\frac{d y}{d x}+y^{2} \frac{d y}{d x}+y^{4} \frac{d y}{d x}
$$

$$
\therefore 1 f 15 x=15 y+5 y^{3}+3 y^{5}
$$

$$
1=\frac{d y}{d x}\left(1+y^{2}+y^{4}\right)
$$

$$
\frac{d y}{d x}=\frac{1}{1+y^{2}+y^{4}}
$$

$$
\frac{d y}{d x}=\left(1+y^{2}+y^{4}\right)^{-1}
$$

Ex. 6. Let $y=-\left(65-x^{6}\right)^{\frac{1}{6}}$. Find the equation of the normal line at $(1,-2)$ by first expressing the curve in a simple implicit form, and then using implicit differentiation.
Leave your answer in standard form.

$$
\begin{aligned}
& y=-\left(65-x^{6}\right)^{\frac{1}{6}} \\
&(y)^{6}=\left[-\left(65-x^{6}\right)^{\frac{1}{6}}\right]^{6} \\
& y^{6}=+\left(65-x^{6}\right) \\
& y^{6}=65-x^{6} \\
& \text { Diff. w.r.t. } x \\
& b y^{5} \cdot \frac{d y}{d x}=-6 x^{5} \\
& \frac{d y}{d x}=\frac{-x^{5}}{y^{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore m_{t}=\frac{-x^{5}}{y^{5}} \\
& \text { at } x=1, y=-2
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{-32} \\
& =\frac{1}{32}
\end{aligned}
$$

For normal,

$$
\begin{aligned}
& \text { For normal) } \cdot b=- \\
& m_{n}=-32 ;(1,-2) ; b=-32(1)+b \\
& -2=-2=-32+b \\
& -2+ \\
& 30=b
\end{aligned}
$$

\therefore the equation of the
required normal is

$$
y=-32 x+30 \text { or }
$$

$$
32 x+y-30=0
$$

ON TEST
\forall Ex. 6. Find all points (x, y) on the curve $x^{7}+x y+2 y^{2}=6$ at which the slope of the tangent is $-\frac{1}{3}$.

$$
\begin{gathered}
x+x \cdot y+2 y^{2}=6 \\
\text { diff. w.r.t. } x \\
1+1 \cdot y+1 \frac{d y}{d x} \cdot x+4 y \frac{d y}{d x}=0 \\
x \frac{d y}{d x}+4 y \frac{d y}{d x}=-y-1 \\
\frac{d y}{d x}(x+4 y)=-y-1 \\
\frac{d y}{d x}=\frac{-y-1}{x+4 y} \\
\therefore m_{t}=\frac{-y-1}{x+4 y}
\end{gathered}
$$

Find x if

$$
\begin{gathered}
m_{t}=-\frac{1}{3} \\
\frac{-y-1}{x+4 y}=\frac{1}{-3} \\
x+4 y=3 y+z \\
x+y=3 \\
x=3-y
\end{gathered}
$$

Solve:

$$
\left.\begin{array}{l}
x+x y+2 y^{2}=6 \text { (1) } \\
x=3-y \text { (2) }
\end{array}\right\}
$$

sub (2) into (1)

$$
\begin{aligned}
& (3-y)+y(3-y)+2 y^{2}=6 \\
& 3-y+3 y-y^{2}+2 y^{2}-6=0 \\
& y^{2}+2 y-3=0 \\
& (y-1)(y+3)=0 \\
& \therefore y=1 \text { or } y=-z \\
& \text { subin(2) } \quad \operatorname{sub} \text { in (2) } \\
& \begin{array}{ll}
x=3-1 & \text { x } \\
=2 & =6
\end{array}
\end{aligned}
$$

\therefore the slope of the tangent is $-\frac{1}{3}$ at the points $(2,1)$ ₹ $(6,-3)$.

Higher-Order Derivatives

Ex. 1. Calculate the first and second derivatives of the following functions.
a) $f(x)=2 x^{3}-5 x^{2}$
b) $y=\sqrt{1-x}$
c) $y=\frac{1}{(2 x-3)^{2}}$
$f^{\prime}(x)=6 x^{2}-10 x$

$$
f^{\prime \prime}(x)=12 x-10
$$

"f double "d two y by d x^{2} "

Velocity and Acceleration

Distance vs Time Graph

$=v_{a \cup g}$.

Average Velocity

$$
\begin{aligned}
v_{\text {avg }} & =m_{\text {sec } \text { ant }} \\
& =\frac{s_{2}-s_{1}}{t_{2}-t_{1}} \\
\therefore v_{\text {avg }} & =\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

Average Acceleration

$$
\begin{aligned}
a_{a v g} & =m_{\text {sec } a n t} \\
& =\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \\
\therefore a_{a v g} & =\frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}
\end{aligned}
$$

Velocity

$$
v=m_{t}
$$

$$
=\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}
$$

$$
=\frac{d s}{d t} \text { or } s^{\prime}
$$

$$
\therefore v(t)=s^{\prime}(t)
$$

Acceleration

$$
a=m_{t}
$$

$$
=\lim _{h \rightarrow 0} \frac{v(t+h)-v(t)}{h}
$$

$$
=\frac{d v}{d t} \text { or } v^{\prime}
$$

$$
=\frac{d^{2} s}{d t^{2}} \text { or } s^{\prime \prime}
$$

$$
\therefore a(t)=v^{\prime}(t) \text { or } s^{\prime \prime}(t)
$$

Note: Concerning the velocity:

If $v(t)>0$, the object is moving to the right or up (in the + eve direction).
If $v(t)<0$, the object is moving to the left or down (in the -de direction).
If $v(t)=0$, the object is stationary, or at rest.
Concerning acceleration: If $a(t)=0$, braking begins.
The object is accelerating if the product of $a(t)$ and $v(t)$ is positive.
The object is decelerating if the product of $a(t)$ and $v(t)$ is negative.

Ex. 2. Starting at $t=0$, a dragster accelerates down a strip and then brakes and comes to a stop.
The distance in metres at t seconds is given by $s(t)=6 t^{2}-\frac{1}{5} t^{3}$.
a) Find the dragster's velocity and acceleration after 2 seconds.
b) After how many seconds does the dragster stop?
c) What distance does the dragster travel?
d) At what time does braking commence?

$$
\begin{aligned}
& \text { * } s(t)=6 t^{2}-\frac{1}{5} t^{3} \\
& v(t)=A^{\prime}(t) \\
& * v(t)=12 t-\frac{3}{5} t^{2} \\
& a(t)=v^{\prime}(t) \\
& \forall a(t)=12-\frac{6}{5} t \\
& \begin{aligned}
v(2) & =12(2)-\frac{3}{5}(2)^{2} \\
& =21.6 \\
a(2) & =12-\frac{6}{5}(2)
\end{aligned} \\
& =9.6 \\
& \text { b) Find } t \text { if } \\
& v(t)=0 \\
& 12 t-\frac{3}{5} t^{2}=0 \\
& 60 t-3 t^{2}=0 \\
& 3 t(20-t)=0 \\
& \therefore t=0 \text { or } t=20 \\
& \text { the dragster } \\
& \text { stops after } 20 \\
& \text { seconds. }
\end{aligned}
$$

a)

$$
\text { C) } \begin{aligned}
& A(20) \\
= & 6(20)^{2}-\frac{1}{5}(20)^{3} \\
= & 800
\end{aligned}
$$

\therefore the dragster travels 800 m .
d) Find t if

$$
\begin{aligned}
a(t) & =0 \\
12-\frac{6}{5} t & =0 \\
60-6 t & =0 \\
-6 t & =-60 \\
t & =10
\end{aligned}
$$

\therefore braking
10 s.

Ex. 3. The position function of an object moving in a straight line is $s(t)=3 t^{2}-\frac{1}{4} t^{4}$. Is the object moving towards or away from its starting position at:
a) $t=2$?

$$
\begin{aligned}
& \Delta(t)=3 t^{2}-\frac{1}{4} t^{4} \\
& v(t)=6 t-t^{3}
\end{aligned}
$$

a)

$$
\begin{aligned}
& A(2)=+8 \\
& v(2)=+4
\end{aligned}
$$

\therefore at $t=2$ the object is moving away from its starting position
b) $t=4$?
c) $t=3$?

For the starting
position, $t=0$

$$
S(0)=0
$$

b)

$$
\begin{aligned}
& \Delta(4)=-16 \\
& v(4)=-40 \\
& \underset{-16}{<}=0
\end{aligned}
$$

\therefore at $t=4$ the
object is moving
away from its
starting position.
c)

$$
\begin{aligned}
s(z) & =6.75 \\
v(3) & =-9 \\
& 0 \quad 6.75
\end{aligned}
$$

\therefore at $t=3$ the object is moving
towards its starting position

Ex. 4. A fly ball is hit vertically upward. The position function of the ball is $s(t)=-5 t^{2}+30 t$ where s is its height, in metres, above the ground after t seconds.
a) Find the maximum height reached by the ball.
b) Find the velocity of the ball as it strikes the ground.

$$
\begin{aligned}
& s(t)=-5 t^{2}+30 t \\
& v(t)=-10 t+30 \\
& a(t)=-10
\end{aligned}
$$

a) Find t if
b) Find t if

$$
\begin{gathered}
v(t)=0 \\
-10 t+30=0 \\
-10 t=-30 \\
t=3 \\
s(3)=-5(3)^{2}+30(3) \\
=45
\end{gathered}
$$

\therefore the ball reaches a maximum height of 45 m

$$
\begin{aligned}
& A(t)=0 \\
& -5 t^{2}+30 t=0 \\
& -5 t(t-6)=0 \\
& t=0 \text { or } t=6 \\
& v(6)=-10(6)+30 \\
& =-30 \\
& \text { the ball strikes the }
\end{aligned}
$$ ground with a velocity of

Ex. 5. A pebble is thrown vertically upwards from the top of a cliff of height 30 m . The pebble's height, h, in metres, in relation to the bottom of the cliff t seconds later is $h(t)=-5 t^{2}+25 t+30$. Find the pebble's velocity on impact at the base of the cliff.

$$
\begin{aligned}
& h(t)=-5 t^{2}+25 t+30 \\
& v(t)=-10 t+25
\end{aligned}
$$

Find t if

$$
\begin{aligned}
v(6) & =-10(6)+25 \\
& =-35
\end{aligned}
$$

$$
\begin{gathered}
h(t)=0 \\
-5 t^{2}+25 t+30=0 \\
-5\left(t^{2}-5 t-6\right)=0 \\
-5(t-6)(t+1)=0 \\
\therefore t=6 \text { or } t=-1 \\
\because t \geq 0, \quad t=6
\end{gathered}
$$

