Section 5.3 – RELATED RATES

Ex. 1. Differentiate each of the following formulas with respect to time, t.

CIRCLE

- $C = 2\pi r$

 $\frac{dC}{dt} = \frac{dC}{dr} \cdot \frac{dr}{dt}$ $\frac{dC}{dt} = \frac{dC}{dr} \cdot \frac{dr}{dt}$

$$\frac{\text{TRIANGLE}}{A = \frac{1}{2}bh}$$
$$\frac{dA}{d\xi} = \frac{1}{2}\frac{db}{d\xi} \cdot h + \frac{dh}{d\xi} \cdot \frac{1}{2}b$$

CYLINDER

 $S.A. = 4\pi r^{2}$ $V = \pi r^{2}h$ $\frac{dSA.}{dL} = 8\pi r^{2} \frac{dr}{dL}$ $\frac{dV}{dL} = 2\pi r^{2}h$ $\frac{dV}{dL} = 2\pi r^{2}h$ $\frac{dV}{dL} = 2\pi r^{2}h$

Ex. 2. A raindrop falls in a puddle and the ripples spread in circles. If the radius is growing at a rate of 2 *cm/s*, find the rate of increase of the area of such a circle when its area is $36\pi \ cm^2$.

Find:
$$\frac{dA}{dt}$$
 when $A=36\pi \text{ cm}^2$ $A=\pi \text{ r}^2$
 $diff. w.r.t.t$
Given: $\frac{dr}{dt} = 2\text{ cm}/s$ $\frac{dA}{dt} = 2\pi \text{ r}^2 \frac{dr}{dt}$
 $\frac{dA}{dt} = 2\pi (6)(2)$
 $\frac{dA}{dt} = 2\pi (6)(2)$
 $\frac{dA}{dt} = 2\pi (6)(2)$
 $\frac{dA}{dt} = 24\pi$
 $\pi \text{ r}^2 = 36\pi$ increasing at an exact rate of
 $r^2 = 36$ increasing at an exact rate of
 $r=6, r\geq 0$ 24 π cm²/s or an approximate
rate of 75.4 cm²/s

Ex. 3. A conical flower vase is 30 cm high with a radius of 6 cm at the top. If it is being filled with water at a rate of 10 cm³/s, find the rate at which the water level is rising when the depth is 20 cm.

20 cm.
Given:
$$dl = 10 \text{ cm}^{3/4}$$
.
Find: dh when $h = 30 \text{ cm}$
 $V = \frac{1}{3} \text{Tr} \left(\frac{1}{5}h\right)^{2} h$
 $V_{\text{water}} = \frac{1}{3} \text{Tr} \left(\frac{1}{5}h\right)^{2} h$
 $V = \frac{1}{3} \text{Tr} \left(\frac{1}{5}h\right)^{2} h$

Ex. 4. A spherical weather balloon with radius 9 *m* springs a leak losing air at the rate of $171\pi m^3 / \min$. Find the rate of decrease of the radius after 4 minutes.

$$f = 9m$$

$$f = 171 \text{ Tr } \frac{3}{16} \text{ min.}$$
Find: $\frac{dV}{dt} = -171 \text{ Tr } \frac{3}{16} \text{ min.}$
Find: $\frac{dV}{dt} = -171 \text{ Tr } \frac{3}{16} \text{ min.}$
Find r after
$$f = 171 \text{ Tr } \frac{3}{16} \text{ min.}$$

$$V = V_6 - V_{losl}$$

$$= 4\pi(9^3 - 171 \text{ Tr } 4$$

$$V = V_6 - V_{losl}$$

$$= 4\pi(9^3 - 171 \text{ Tr } 4$$

$$= 972\pi - 684\pi$$

$$= 288\pi$$
Find r
$$= 288\pi$$
Find r
$$= 288\pi$$
Find r
$$= 288\pi$$

$$= 1717 - 684\pi$$

$$= 4\pi r^3 = 288\pi$$

$$= 1717 - 684\pi$$

$$= 4\pi r^3 = 288\pi$$

$$= 1717 - 684\pi$$

$$= 288\pi$$

.

RELATED RATES – I

Ex. 1. A ladder 5 m long rests against a vertical wall. The base of the ladder begins to slide outwards at a rate of 1 m/s. How fast is the top of the ladder descending when the base is 3 m away from the wall?

Ex. 2. Car A approaches an intersection from the east at a rate of 12 m/s and Car B approaches from the north at a rate of 15 m/s. How fast is the distance between the cars decreasing at the instant Car A is 30 m east of the intersection and Car B is 40 m north of the intersection?

Find de when

$$\chi = +30 \text{ m}$$

 $\chi = +30 \text{ m}$
 $\chi = -12 \text{ m/A}$
 $\chi = -12 \text{ m/A}$

Ex. 3. A horizontal eavestrough 3 m long has a triangular cross-section 10 cm across the top and 10 cm deep. During a rainstorm, the water in the trough is rising at a rate of 1 cm/min. How fast is the volume of water in the trough increasing when the depth of water is 5 cm?

Giren:
$$dh = +1 \text{ on}/\text{min}$$

 dt
 dt

Ex. 4. A woman 2 m tall walks away from a streetlight that is 6 m high at a rate of 1.5 m/s.

- a) At what rate is her shadow lengthening when she is 3 m from the base of the light?
- **b**) At what rate is the tip of her shadow moving when she is 3 m from the base of the light?

Find
$$dz$$
 when $X = 3m$
Using similar Δs
 $dx = +1.5m/s$ a) $dz = 0.75m/s$
 $dz = \frac{x+z}{z}$
 $dx = +1.5m/s$ a) $dz = 0.75m/s$
 $\frac{b}{2} = \frac{x+z}{z}$
 $\frac{c}{2} = \frac{x+z}{z}$
 $\frac{c}{1} = \frac{c}{2}$
 $\frac{c}{2} = \frac{c}{2}$
 $\frac{c$

4

HW: p. 193 #1cd, 2a, 8 to 10, 18, 19; Related Rates - Sheet I

RELATED RATES – II

Ex. 1. A ship K is sailing due north at 16 km/h, and a second ship R, which is 44 km north of K, is sailing due east at 10 km/h. At what rate is the distance between ships K and R changing 90 minutes later? Are they approaching one another or separating at this time?

Ex. 2. The cross-section of a water trough is an equilateral triangle with a horizontal top edge. If the trough is 5 m long and 25 cm deep, and water is flowing in at a rate of $0.25 \text{ m}^3/\text{min}$, how fast is the water level rising when the water is 10 cm deep at the deepest point?

Ex. 3. A conveyor belt system at a gravel pit pours washed sand onto the ground at the rate of $180 \text{ m}^3/\text{h}$. The sand forms a conical pile with height one-third the diameter of the base. Determine how fast the height of the pile is increasing at the instant the radius of the base is 6 m.

Ex. 4. An OPP officer is operating a radar speed trap on a sideroad 100 m from Highway 86, near Listowel. When a car is 200 m from the intersection, its velocity of approach is measured as 70 km/h. Is the car exceeding the speed limit of 80 km/h?

T
$$dx = +0.2 \text{ km}$$

 $dx = ? \text{ car}$
 -0.1 km $A = \frac{1}{dA} = -70 \text{ km/h}.$

$$Find \Delta \Delta^{2} = (-0.1)^{2} + (0.2)^{2} \Delta^{2} = 0.01 + 0.04 \Delta^{2} = 0.05 \Delta = \sqrt{0.05}$$

Gittn
$$\frac{dV}{dt} = 180 \text{ m}^3/\text{k}$$
 i $h = \frac{1}{3}$
Find $\frac{dV}{dt}$ when $r = 6 \text{ m}$
 $V = \frac{1}{3} \text{ Tr}^2 \text{h}$
 $V = \frac{1}{3} \text{ Tr}^2 \text{h}$
 $V = \frac{1}{3} \text{ Tr}^2 \text{h}$
 $V = \frac{1}{3} \text{ Tr}^2 \text{h}^2$
 $V = \frac{1}{3} \text{ Tr}^2 \text{h}^2$
 $V = \frac{1}{3} \text{ Tr}^3 \text{ gh}^2 \text{h}$
 $\frac{180}{36\pi} = \frac{3}{4} \text{ dt}$
 $\frac{180}{36\pi} = \frac{3}{4$

dx = -78.3 dt not exceeding the

HW: Related Rates - Sheet II Speed (im/+, REVIEW FOR TEST: p. 219 #1-9, 11, 12, 17-22, 23a; p. 223 #1-7, 9; p. 291 #1-6, 11, 12

e

Car