Ex. 1. Differentiate each of the following formulas with respect to time, t.

CIRCLE

$$
\begin{aligned}
& -C=2 \pi r \\
& \frac{d C}{d t}=\frac{d C}{d r} \cdot \frac{d r}{d t} \\
& \frac{d C}{d t}=2 \pi \frac{d r}{d t}
\end{aligned}
$$

TRIANGLE

$$
\begin{gathered}
A=\frac{1}{2} b h \\
\frac{d A}{d t}=\frac{1}{2} \frac{d b}{d t} \cdot h+\frac{d h}{d t} \cdot \frac{1}{2} b
\end{gathered}
$$

SPHERE

$$
\begin{aligned}
& S . A .=4 \pi r^{2} \\
& \frac{d S \cdot A .}{d t}=8 \pi r^{\prime} \cdot \frac{d r}{d t}
\end{aligned}
$$

CYLINDER

$$
\begin{aligned}
V & =\underbrace{r^{2}} \cdot \underbrace{n} \\
\frac{d V}{d t} & =2 \pi r^{\prime} \frac{d r}{d t} \cdot h+\frac{d h}{d t} \cdot \pi r^{2}
\end{aligned}
$$

Ex. 2. A raindrop falls in a puddle and the ripples spread in circles. If the radius is growing at a rate of $2 \mathrm{~cm} / \mathrm{s}$, find the rate of increase of the area of such a circle when its area is $36 \pi \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& \text { Find: } \frac{d A}{d t} \text { when } A=36 \pi \mathrm{~cm}^{2} \\
& \text { Given: } \frac{d r}{d t}=2 \mathrm{~cm} / \mathrm{s} \\
& \text { \& Find } r \text { if } \\
& A=36 \pi \mathrm{~cm}^{2} \\
& \pi r^{2}=36 \pi \\
& r^{2}=36 \\
& r=6, r \geq 0 \quad \text { incre } \\
& 24 \pi
\end{aligned}
$$

$$
2
$$

$$
\begin{aligned}
& A=\pi r^{2} \\
& \text { diff. w.r.t. } t \\
& \frac{d A}{d t}=2 \pi r \frac{d r}{d t} \\
& \frac{d A}{d t}=2 \pi(6)(2) \\
& \frac{d A}{d t}=24 \pi
\end{aligned}
$$

Ex. 3. A conical flower vase is 30 cm high with a radius of 6 cm at the top. If it is being filled with water at a rate of $10 \mathrm{~cm}^{3} / \mathrm{s}$, find the rate at which the water level is rising when the depth is 20 cm .

Find r in terms
"of the water level
" h ". Using similar Δs,

$$
\begin{aligned}
& \frac{r}{h}=\frac{6}{30} \\
& r=\frac{1}{5}^{h} h
\end{aligned}
$$

$$
\text { Given: } \frac{d V}{d t}=10 \mathrm{~cm}^{3} / \mathrm{s}
$$

$$
\text { Find: } \frac{d t}{d t} \text { when } h=20 \mathrm{~cm}
$$

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
V_{\text {water }}=\frac{1}{3} \pi\left(\frac{1}{5} h\right)^{2} \cdot h
$$

$$
V=\frac{1}{3} \pi \cdot \frac{1}{25} h^{2} \cdot h
$$

$$
V=\frac{\pi}{75} h^{3}
$$

diff.w.r.t. "t"

$$
\frac{d V}{d t}=\frac{\pi}{25} h^{2} \cdot \frac{d h}{d t}
$$

$$
10=\frac{\pi}{25}(20)^{2} \frac{d h}{d t}
$$

Ex. 4. A spherical weather balloon with radius 9 m springs a leak losing air at the rate of $171 \pi \mathrm{~m}^{3} / \mathrm{min}$. Find the rate of decrease of the radius after 4 minutes.

$$
\begin{aligned}
& \frac{d v}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& -171 \pi=4 \pi(6)^{2} \frac{d r}{d t} \\
& -\frac{171}{144}=\frac{d r}{d t} \\
& -\frac{19}{16}=\frac{d r}{d t}
\end{aligned}
$$

\forall

$$
\begin{aligned}
& \text { Find } r \text { after } \\
& 4 \text { min. } \\
& V=V_{6}-V_{\text {lost }} \\
& =\frac{4 \pi}{3}(9)^{3}-171 \pi \times 4 \\
& =972 \pi-684 \pi \\
& =288 \pi \\
& F_{\text {Ind }} r \\
& \frac{4 \pi^{\prime} r^{3}}{3}=288 \pi^{\prime} \\
& r^{3}=216 \\
& r=\sqrt[3]{216} \\
& r=6
\end{aligned}
$$

HW: p. 193 \#1ab, 3 to 7, 12, 13, 15, 16, 21
\therefore the rate of decrease of the radius is

$$
1 \frac{3}{16} \mathrm{~m} / \mathrm{min}
$$

Ex. 1. A ladder 5 m long rests against a vertical wall. The base of the ladder begins to slide outwards at a rate of $1 \mathrm{~m} / \mathrm{s}$. How fast is the top of the ladder descending when the base is 3 m away from the wall?

Find $\frac{d y}{d t}$ when $x=+3 \mathrm{~m}$

$$
\begin{gathered}
x^{2}+y^{2}=25 \\
\text { diff.w.r.t. "t" } \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
x \frac{d x}{d t}+y \frac{d y}{d t}=0 \\
(3)(1)+(4) \frac{d y}{d t}=0 \\
\frac{d y}{d t}=-\frac{3}{4}
\end{gathered}
$$

\therefore the top of the ladder is descending at a rate of $\frac{3}{4} \mathrm{~m} / \mathrm{s}$.

Ex. 2. Car A approaches an intersection from the east at a rate of $12 \mathrm{~m} / \mathrm{s}$ and Car B approaches from the north at a rate of $15 \mathrm{~m} / \mathrm{s}$. How fast is the distance between the cars decreasing at the instant Car A is 30 m east of the intersection and Car B is 40 m north of the intersection?

$*$ Find o if

$$
\begin{gathered}
x=+30 \sum_{1} y=+40 \\
A^{2}=(30)^{2}+(40)^{2} \\
A^{2}=2500 \\
A=50
\end{gathered}
$$

$$
\text { Find } \frac{d A}{d t} \text { when }
$$

$$
x=+30 m \quad \dot{\varepsilon} y=+40 \mathrm{~m}
$$

$$
\begin{aligned}
& A^{2}=x^{2}+y_{" \prime \prime}^{2} \\
& \text { diff w.r.t. }
\end{aligned}
$$

$$
x^{\prime} \not 2 A \frac{d A}{d t}=x^{\prime} x x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

$$
(50) \frac{d A}{d t}=(+30)(-12)+(+40)(-15)
$$

$$
\frac{d \theta}{d t}=-19.2
$$

\therefore the distance between the cars is decreasing at a rate of
$19.2 \mathrm{~m} / \mathrm{s}$.

Ex. 3. A horizontal eavestrough 3 m long has a triangular cross-section 10 cm across the top and 10 cm deep. During a rainstorm, the water in the trough is rising at a rate of $1 \mathrm{~cm} / \mathrm{min}$. How fast is the volume of water in the trough increasing when the depth of water is 5 cm ?

*Find b in terms of h using similar Δs.

$$
\begin{aligned}
& \frac{b}{h}=\frac{10}{10} \\
& b=h
\end{aligned}
$$

Ex. 4. A woman 2 m tall walks away from a streetlight that is 6 m high at a rate of $1.5 \mathrm{~m} / \mathrm{s}$.
a) At what rate is her shadow lengthening when she is 3 m from the base of the light?
b) At what rate is the tip of her shadow moving when she is 3 m from the base of the light?
a)

Find $\frac{d z}{d t}$ when $x=3 m$
Using similar $\Delta \cdot \delta$

$$
\frac{6}{2}=\frac{x+z}{z}
$$

$$
\frac{3}{1}=\frac{x+z}{z}
$$

\therefore her shadow is le ngthening

$$
z z=x+z
$$

$2 z=x$
is 3 m from the base of the light.
b)

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{d z}{d t} \\
= & 1.5+0.75 \\
= & 2.25
\end{aligned}
$$

\therefore the tip of her
shactow is moving
$=1.5+0.75$ at a rate of $2.25 \mathrm{~m} / \mathrm{s}$.

$$
=\frac{3}{4}
$$

$$
\begin{aligned}
& \text { Given } \frac{d h}{d t}=+1 \mathrm{~cm} / \mathrm{min} \\
& \text { Find: } \frac{d V}{d t} \text { when } h=5 \mathrm{~cm} \\
& V_{\text {water }}=A_{\text {triangle }} \times 300 \\
& \text { in } \mathrm{cm}^{3}=\frac{b h}{2} \times 300 \\
& V=150 \mathrm{bh} \quad \therefore \text { the volume } \\
& V=150(h)(h) \\
& V=150 h^{2} \text { " }{ }^{V} \text { " } \\
& \frac{d V}{d t}=300 \mathrm{~h} \frac{\mathrm{dh}}{d t} \\
& =300(5)(1) \\
& =1500 \\
& \text { of water in } \\
& \text { the trough } \\
& \text { is increasing } \\
& 1500 \mathrm{~cm}^{3} / \mathrm{min} \text { or } \\
& 0.0015 \mathrm{~m}^{3} / \mathrm{min} \text {. }
\end{aligned}
$$

Ex. 1. A ship K is sailing due north at $16 \mathrm{~km} / \mathrm{h}$, and a second ship R, which is 44 km north of K, is sailing due east at $10 \mathrm{~km} / \mathrm{h}$. At what rate is the distance between ships K and R changing 90 minutes later? Are they approaching one another or separating at this time?

$$
\text { Given } \frac{d y}{d t}=+16 \mathrm{~km} / \mathrm{h} \dot{\varepsilon} \frac{d x}{d t}=+10 \mathrm{~km} / \mathrm{h}
$$

After 90 min , ship K sails $24 \mathrm{~km} N$. $\dot{\xi}$ ship R sails $15 \mathrm{~km} E$

$$
\begin{aligned}
& s^{2}=x^{2}+y^{2} \\
& \text { diff. w.r.t. }
\end{aligned}
$$

$$
*^{\prime} \alpha \Delta \frac{d s}{d t}='^{\prime} x \frac{d x}{d t}+2 y \frac{d y}{d t}
$$

$$
\begin{array}{r}
d t \quad d t \\
(25) \frac{d s}{d t}=(+15)(+10)+(-20)(+16) \\
\quad \therefore \text { the distance }
\end{array}
$$

\therefore the distance beturen
$d A=-6.8$ the ships is changing at a rate of -6.8 kmph . They
are approaching one another at this time.
Ex. 2. The cross-section of a water trough is an equilateral triangle with a horizontal top edge. If the trough is 5 m long and 25 cm deep, and water is flowing in at a rate of $0.25 \mathrm{~m}^{3} / \mathrm{min}$, how fast is the water level rising when the water is 10 cm deep at the deepest point?

$$
\begin{aligned}
& \frac{b}{h}=\frac{2}{\sqrt{3}} \\
& b=\frac{2}{\sqrt{3}} h
\end{aligned}
$$

$$
V=\frac{1}{2} \cdot \frac{1}{\sqrt{3}} h \cdot h \cdot 5
$$

$V=\frac{5}{\sqrt{3}} h^{2}$
diff. w.r.t. t
$\frac{d V}{d t}=\frac{10}{\sqrt{3}} h \frac{d h}{d t}$
$\frac{1}{4}=\frac{10}{\sqrt{3}} \cdot\left(\frac{1}{10}\right) \frac{d h}{d t}$

$$
\frac{\sqrt{3}}{4}=\frac{d h}{d t}
$$

Ex. 3. A conveyor belt system at a gravel pit pours washed sand onto the ground at the rate of $180 \mathrm{~m}^{3} / \mathrm{h}$. The sand forms a conical pile with height one-third the diameter of the base. Determine how fast the height of the pile is increasing at the instant the radius of the base is 6 m .

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
h=\frac{1}{3} d
$$

* Find ${ }^{3}$ r in terms

$$
V=\frac{1}{3} \pi\left(\frac{3 h}{2}\right)^{2} \cdot h
$$ of h

$$
V=\frac{1}{3} \pi \cdot \frac{3}{3} \cdot \frac{9 h^{2}}{4} \cdot h
$$

$h=\frac{2 r}{3}$

$$
\frac{3 h}{2}=r
$$

Find h if $r=6 m$

$$
h=\frac{2}{3}(6)
$$

$$
h=4
$$

Ex. 4. An OPP officer is operating a radar speed trap on a sideroad 100 m from Highway 86, near Listowel. When a car is 200 m from the intersection, its velocity of approach is measured as $70 \mathrm{~km} / \mathrm{h}$. Is the car exceeding the speed limit of $80 \mathrm{~km} / \mathrm{h}$?

$*$ Find s

$$
\begin{aligned}
& A^{2}=(-0.1)^{2}+(0.2)^{2} \\
& A^{2}=0.01+0.04 \\
& A^{2}=0.05 \\
& A=\sqrt{0.05}
\end{aligned}
$$

$$
x^{2}+(-0.1)^{2}=A^{2}
$$

$$
\begin{aligned}
x^{2} & +0.01=s^{2} \\
d i f f . & \text { writ. " } t^{\prime \prime} \\
2 x \frac{d x}{d t} & =2 \Delta \frac{d A}{d t} \\
(+0.2) \frac{d x}{d t} & =(\sqrt{0.05})(-70) \\
\frac{d x}{d t} & =-78.3
\end{aligned}
$$

$$
\text { Find } \frac{d x}{d t}
$$ \therefore the height is increas. ing at an exact rate of $\frac{5}{\pi} \mathrm{~m} / \mathrm{h}$ or approx. $1.59 \mathrm{~m} / \mathrm{h}$

