\qquad DERIVATIVES OF THE OTHER TRIG FUNCTIONS
Ex. 1. Find $\frac{d y}{d x}$ for each of the following reciprocal trig functions and illustrate graphically.
a) $y=\csc x$

$$
\begin{aligned}
y & =\frac{1}{\sin x} \\
y & =(\sin x)^{-1} \\
\frac{d y}{d x} & =-(\sin x)^{-2} \cdot \cos x \cdot 1 \\
& =-\frac{\cos x}{\sin ^{2} x} \\
& =-\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} \\
\therefore \frac{d y}{d x} & =-\csc x \cdot \cot x
\end{aligned}
$$

b)

$$
\text { b) } \begin{aligned}
y & =\sec x \\
y & =\frac{1}{\cos x} \\
y & =(\cos x)^{-1} \\
\frac{d y}{d x} & =-(\cos x)^{-2}(-\sin x \cdot 1) \\
& =+\frac{\sin x}{\cos ^{2} x} \\
& =\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\
\frac{d y}{d x} & =\sec x \cdot \tan x
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } \begin{aligned}
y & =\tan x \\
y & =\frac{\sin x}{\cos x} \\
\frac{d y}{d y} & =\frac{\cos x \cdot \cos x-(-\sin x) \cdot \sin x}{(\cos x)^{2}} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x} \\
& =\frac{1}{\cos ^{2} x} \\
& =\left(\frac{1}{\cos x}\right)^{2} \\
\therefore \frac{d y}{d x} & =\sec ^{2} x \\
\text { d) } y & =\cot x \\
y & =\frac{\cos x}{\sin x} \\
& =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{d y} \\
& =\frac{-\sin x \cdot \sin x-\cos x \cdot \cos x}{(\sin x)^{2}} \\
& =\frac{-1}{\sin ^{2} x} \\
\therefore \frac{d y}{d x} & =-\csc ^{2} x
\end{aligned}
\end{aligned}
$$

SUMMARY OF TRIGONOMETRIC DERIVATIVES

$$
\begin{array}{llrl}
\frac{d}{d x}(\sin x) & =\cos x & \frac{d}{d x}(\cos x) & =-\sin x \\
\frac{d}{d x}(\tan x) & =\sec ^{2} x & \frac{d}{d x}(\cot x) & =-\csc ^{2} x \\
\frac{d}{d x}(\sec x) & =\sec x \tan x & \frac{d}{d x}(\csc x) & =-\csc x \cot x
\end{array}
$$

Ex. 2. Find $\frac{d y}{d x}$ for the following:

$$
\begin{aligned}
& \text { a) } y=\tan \left(x^{3}+4 x\right) \\
& \frac{d y}{d x}=\sec ^{2}\left(x^{3}+4 x\right)\left(3 x^{2}+4\right) \\
& \frac{d y}{d y}=\left(3 x^{2}+4\right) \cdot \sec ^{2}\left(x^{3}+4 x\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \begin{aligned}
& y=2 x^{3} \cdot \cot \left(\frac{1}{x}\right) \\
& \frac{d y}{x^{-1}} \\
& \frac{d y}{x}=6 x^{2} \cdot \cot \left(\frac{1}{x}\right)+\left[-\csc ^{2}\left(\frac{1}{x}\right) \cdot\left(-x^{-2}\right)\right] \cdot 2 x^{3} \\
& \frac{d y}{d x}=6 x^{2} \cdot \cot \left(\frac{1}{x}\right)+2 x^{1} \cdot \csc ^{2}\left(\frac{1}{x}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } y & =\csc (\tan x) \\
\frac{d y}{d x} & =-\csc (\tan x) \cdot \cot (\tan x) \cdot \sec ^{2} x \\
\frac{d y}{d x} & =-\sec ^{2} x \cdot \csc (\tan x) \cdot \cot (\tan x)
\end{aligned}
$$

$$
\begin{aligned}
\text { d) } y & =\sec ^{3} \pi x \\
y & =[\sec \pi x]^{3} \\
\frac{d y}{d x} & =3[\sec \pi x]^{2} \cdot \sec \pi x \cdot \tan \pi x \cdot \pi \\
\frac{d y}{d x} & =3 \pi \cdot \tan \pi x \cdot \sec ^{3} \pi x
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \begin{array}{l}
\cot (x+y)=1-y \\
\text { diff. w.r.t. } \\
-\csc ^{2}(x+y)\left[1+\frac{d y}{d y}\right]=-\frac{d y}{d x} \\
-\csc ^{2}(x+y)-\csc ^{2}(x+y) \cdot \frac{d y}{d x}=-\frac{d y}{d x} \\
\frac{d y}{d x}\left[1-\csc ^{2}(x+y)\right]=\csc ^{2}(x+y) \\
\frac{d y}{d x}=\frac{\csc ^{2}(x+y)}{1-\csc ^{2}(x+y)}
\end{array}
\end{aligned}
$$

Ex. 1. The motion of a particle is described by the function $s(t)=10 \cos \left(5 t-\frac{\pi}{4}\right)$. Find the velocity and acceleration functions and determine the maximum and minimum values of each.

$$
\begin{aligned}
A(t) & =10 \cos \left(5 t-\frac{\pi}{4}\right) \\
w(t) & =A^{\prime}(t) \\
& =10[-\sin (\underbrace{5 t-\frac{\pi}{4}})] \cdot 5 \\
\therefore v(t) & =-50 \sin \left(5 t-\frac{\pi}{4}\right) \\
a(t) & =v^{\prime}(t) \\
& =-50\left[+\cos \left(5 t-\frac{\pi}{4}\right)\right] \cdot 5 \\
\therefore a(t) & =-250 \cos \left(5 t-\frac{\pi}{4}\right)
\end{aligned}
$$

and minimum
velocities are

and minimum
accelerations are 250 and -250.

Ex. 2. A ladder of length 8 m leaning against a wall starts to slide. If its upper end slides down the wall at a rate of $0.25 \mathrm{~m} / \mathrm{s}$, at what rate is the angle between the ladder and the ground changing when the foot of the ladder is 5 m from the wall?
 or an approx. rate of $2.86 \% \mathrm{~s}$.

Ex. 3. A TV camera, located 1000 m from the site of a rocket launch, records the event. The rocket is launched vertically, and its elevation s (in metres) t seconds after liftoff is $s=200 t^{2}$. How rapidly must the camera angle be increased in order to maintain a view of the rocket, 5 s after lift-off?

Find $\sec ^{2} \theta$ if $t=5$

$$
\begin{aligned}
A & =200(5)^{2} \\
& =5000
\end{aligned}
$$

Find. h^{2}

$$
\begin{aligned}
h^{2} & =1000^{2}+5000^{2} \\
h^{2} & =26000000 \\
\sec ^{2} \theta & =\frac{26000000}{1000000} \\
\sec ^{2} \theta & =26
\end{aligned}
$$

Find $\frac{d \theta}{d t}$ when $t=5 \mathrm{~A}$.

$$
\tan \theta=\frac{s}{1000}
$$

$$
\because s=200 t^{2}
$$

$$
\tan \theta=\frac{200 t^{2}}{1000}
$$

$$
\tan \theta=\frac{t^{2}}{5}
$$

$$
5 \tan \theta=t^{2}
$$

$$
\text { diff. w.r.t." } t^{\prime \prime}
$$

$$
\begin{aligned}
5 \cdot \sec ^{2} \theta \cdot \frac{d \theta}{d t} & =2 t \\
5(26) \frac{d \theta}{d t} & =2(5) \\
\frac{d \theta}{d t} & =\frac{1}{13}
\end{aligned}
$$

\therefore the camera angle must increase atman exact rate of $\frac{1}{13}$ radian $/ \mathrm{s}$ or an approx. rate of $4.41 \% \mathrm{~s}$.

Ex. 1. Find the maximum and minimum values of $f(x)=\cos 2 x+2 \sin x$ for $0 \leq x \leq \frac{3 \pi}{4}$.

$$
\begin{aligned}
& f(x)=\cos 2 x+2 \sin x \\
& f^{\prime}(x)=-2 \sin 2 x+2 \cos x
\end{aligned}
$$

For maximin

$$
f^{\prime}(x)=0
$$

$$
-2 \sin 2 x+2 \cos x=0
$$

$$
\begin{aligned}
& 2 \sin x \cdot \cos x-\cos x=0 \\
& \cos x(2 \sin x-1)=0 \\
& \therefore \cos x=0 \quad \text { or } \quad \sin x=\frac{1}{2} \\
& x=\frac{\pi}{2} \quad n Q I \quad \text { in } Q \frac{\pi}{6} \quad x=\frac{\pi}{6}
\end{aligned}
$$

x	$f(x)$	
0	1	$<\min$
$\frac{\pi}{6}$	$1 \frac{1}{2}$	\max
$\frac{\pi}{2}$	1	
$\frac{3 \pi}{4}$	$\sqrt{2}$	

$$
\therefore \text { by } \quad \sin 2 x-\cos x=0
$$

the maximum $* 0 \leq x \leq \frac{3 \pi}{4}$
$\begin{aligned} \text { value of } f(x) \text { is } 1 \frac{1}{2} \text { and the minimum value of } f(y) . & =0+\frac{2}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}\left(+\frac{1}{\sqrt{2}}\right)\end{aligned}$
Ex. 2. An isosceles triangle has two equal sides of length 15 cm . What is the maximum possible area of

* Find $\frac{1}{2} b$ in terms of θ

$$
A=\frac{225}{2} \cdot \underbrace{2 \sin \theta \cos \theta}
$$

$$
\begin{aligned}
& \frac{\cos \theta}{1}=\frac{\frac{1}{2} b}{15} \\
& \frac{1}{2} b=15 \cos \theta
\end{aligned}
$$

* Find h in terms of θ

$$
\begin{aligned}
& \frac{\sin \theta}{1}=\frac{h}{15} \\
& h=15 \sin \theta
\end{aligned}
$$

Maximize the area, A, in cm^{2}

$$
\begin{aligned}
A & =\underbrace{\frac{1}{2} b \cdot h} \\
& =15 \cos \theta \cdot 15 \sin \theta \\
A & =225 \sin \theta \cos \theta \cdot \frac{2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{225}{2} \cdot \underbrace{\sin 2 \theta} \\
& \frac{d A}{d \theta}=\frac{225}{2} ; \cos 2 \theta \cdot \gamma^{\prime}
\end{aligned}
$$

$$
\text { For } \max / \mathrm{min}, \frac{d A}{d \theta}=0
$$

$$
A=\frac{225}{2} \cdot \sin \frac{\pi}{2}
$$

$$
=\frac{225}{2} .1
$$

$\cos 2 \theta=0$
$2 \theta=\frac{\pi}{2}$
$\theta=\frac{\pi}{2} \times \frac{1}{2}$$\quad \therefore$ area is $112 \frac{1}{2} \mathrm{~cm}^{2}$.

Ex. 3. Two corridors, 3 m and 2 m wide respectively, meet at right angles. Find the length of the longest thin straight rod that can pass horizontally around the corner. Neglect the thickness of the rod.

Answer to the nearest cm.

Find l_{1} ! l_{2} in terms of θ

$$
\begin{array}{ll}
\frac{\sin \theta}{1}=\frac{3}{l_{1}} & \frac{\cos \theta}{1}=\frac{2}{l_{2}} \\
l_{1} \cdot \sin \theta=3 & l_{2} \cdot \cos \theta=2 \\
l_{1}=\frac{3}{\sin \theta} & l_{2}=\frac{2}{\cos \theta}
\end{array}
$$

maximize the length, l, of the rod in m

$$
\begin{aligned}
l & =l_{1}+l_{2} \\
l & =\frac{3}{\sin \theta}+\frac{2}{\cos \theta} * \\
l & =3(\sin \theta)^{-1}+2(\cos \theta)^{-1} \\
\frac{d l}{d \theta} & =-3(\sin \theta)^{-2} \cdot \cos \theta-2(\cos \theta)^{-2}(-\sin \theta) \\
\frac{d l}{d \theta} & =-\frac{3 \cos \theta}{\sin ^{2} \theta}+\frac{2 \sin \theta}{\cos ^{2} \theta}
\end{aligned}
$$

For $\max / \mathrm{min}, \frac{d l}{d \theta}=0$

$$
\tan \theta=\sqrt[3]{\frac{3}{2}}
$$

$$
-\frac{3 \cos \theta}{\sin ^{2} \theta}+\frac{2 \sin \theta}{\cos ^{2} \theta}=0
$$

$$
\theta=\tan ^{-1}\left(\sqrt[3]{\frac{3}{2}}\right)
$$

$$
\theta=48.9
$$

$$
\frac{2 \sin \theta}{\cos ^{2} \theta}=\frac{3 \cos \theta}{\sin ^{2} \theta}
$$

$$
2 \sin ^{3} \theta=3 \cos ^{3} \theta
$$

$$
l=\frac{3}{\sin 48.9^{\circ}}+\frac{2}{\cos 48.9^{\circ}}
$$

$$
\frac{2 \sin ^{3} \theta}{z \cos 3}=\frac{3 \cos ^{3} \theta}{2 \cos ^{3} \theta}
$$

$$
\therefore 7.02
$$

\therefore the length of the
$\tan ^{3} \theta=\frac{3}{2} \quad$ long es longest thin straight rod. is about 7.02 m

