\qquad

5.1 Solving Simple Equations

Warm-up:

Solve the following by inspection.

1. $x+5=13$
$x=8$
2. $-3 x=-4 x-5$

7
3. $0.8 n+18.3=3.9$

7

Solving Equations by: "Isolating the Variable through Inverse Operations"
Ex. 1. Solve each equation using inverse operations.
a) $x+5=13$

$$
\begin{gathered}
x+5-5=13-5 \\
x=8
\end{gathered}
$$

b) $-3 x=-4 x-5$
$-3 x+\underline{4 x}=-4 x-5+4 x$
$x=-5$

Shortcut: "Transposing terms using inverse operations"
Variable terms go on the left side of the equation and constants go on the right side.
If you switch sides, you switch operations.
Ex. 2. Solve each equation by transposing terms through inverse operations first.
a) $x+5=13$
$x=13-5$
$x=8$
b) $-3 x=-4 x-5$
$-3 x+4 x=-5$
$x=-5$
c) $10+2 y=30$
$2 y=30-10$
$\frac{2 y}{2 y}=\frac{20}{2} \longrightarrow y=\frac{20}{2}$

$$
y=10
$$

$y=10$
d) $2 y-8=3 y$
e) $3 x-1=14$
$3 x=14+1$
$\frac{3 x}{3}=\frac{15}{3}$
f) $5 y-6=-6$

$$
5 y=-6+6
$$

$$
\frac{5 y}{50}=\frac{0}{5}
$$

$$
y=0
$$

g) $5-5 x=x-15$

$$
\begin{aligned}
-5 x-x & =-15-5 \\
\frac{-6 x}{-6} & =\frac{-20}{-6} \\
x & =\frac{10}{3}
\end{aligned}
$$

$2 y-3 y=8$
$\frac{-y}{-1}=\frac{8}{-1}$

$$
y=-8
$$

$$
x=5
$$

h) $2 y=8+2 y$
or $\left[\begin{array}{rl}2 y-2 y & =8 \\ \frac{0 y}{0} & =\frac{8}{0} \\ \text { \}undefined }\end{array}\right.$
\therefore there is no solution
i) $1.2 n+18.3=0.4 n+3.9$
$1.2 n-0.4 n=3.9-18.3$
$\begin{aligned} \frac{0.8 n}{0.8} & =\frac{-14.4 \times 10}{0.8 \times 10} \\ n & = \frac { - 1 4 4 } { 8 } \quad 8 \longdiv { 1 4 4 }\end{aligned}$

$$
n=-18
$$

Ex. 3. Solve and do a formal check using a "L.S. = R.S.= format" for the following equation:

$$
\begin{gathered}
-6 x+7=-15-4 x \\
-6 x+4 x=-15-7 \\
\frac{-2 x}{-2}=\frac{-22}{-2} \\
x=11
\end{gathered}
$$

Check $x=11$

$$
\begin{aligned}
L S & =-6 x+7 \\
& =-6(11)+7 \\
& =-66+7 \\
& =-59
\end{aligned}
$$

$$
\begin{aligned}
R S & =-15-4 x \\
& =-15-4(11) \\
& =-15-44 \\
& =-59
\end{aligned}
$$

$$
\therefore x=11 \text { is the solution. }
$$

Ex. 4. For the following word problems write an equation that models the situation, and then solve. Remember to define the variable with a "Let" statement first.
a) Colin ordered 3 pizzas. If he paid $\$ 27.00$ for the order including a delivery cost $\$ 1.50$, how much was each pizza?
Let x represent the cost of one pizza, in $\$$.

$$
\begin{array}{r}
8.5 \\
3 \longdiv { 2 5 . 5 } \\
-24.6 \\
\hline 15 \\
\hline-15
\end{array}
$$

$$
\begin{aligned}
& 3 x+1.50=27.00 \\
& \text { or } \\
& 3 x+1.5=27 \\
& 3 x=27-1.5 \\
& \frac{3 x}{3}=\frac{25.5}{3} \\
& x=8.5
\end{aligned}
$$

b) A number decreased by one, is equal to three more than seven times the number. Determine the number.

Let x represent the unknown number.

$$
\begin{aligned}
x-1 & =7 x+3 \\
x-7 x & =3+1 \\
\frac{-6 x}{-6} & =\frac{4}{-6} \\
x & =-\frac{2}{3}
\end{aligned}
$$

\therefore the number is $-\frac{2}{3}$.
\qquad

5.2 Solving Multi-Step Equations

Ex. 1. Solve and formally check the following equation.

Remember to transpose terms so that variable terms are on one side of the equation and constants are on the other.

$$
\begin{aligned}
5 x-6 & =2 x+8 \\
5 x-2 x & =8+6 \\
\frac{3 x}{3} & =\frac{14}{3} \\
\therefore x & =\frac{14}{3}
\end{aligned}
$$

Check

$$
\begin{array}{rlrl}
L S & =5 x-6 & R S & =2 x+8 \\
& =\frac{5}{1}\left(\frac{14}{3}\right)-\frac{6}{1} & & =\frac{2}{1}\left(\frac{14}{3}\right)+\frac{8}{1} \\
& =\frac{70}{3}-\frac{18}{3} & & =\frac{28}{3}+\frac{24}{3} \\
& =\frac{52}{3} & & =\frac{52}{3}
\end{array}
$$

$$
\because L S=R S
$$

$$
\therefore x=\frac{14}{3} \text { is the solution. }
$$

Ex. 2. Solve each equation.
Make sure each side is simplifie before transposing terms.
a) $\frac{-24+6 x}{-3}=3 x-17$
b) $\begin{aligned} 2 x-5-3 x+1 & =7 x-8-2 x \\ 4 & =5 x-8\end{aligned}$
c) $14-3(5 t-12)=1-(20 t+1)$
$\frac{-24}{-3}+\frac{6 x}{-3}=3 x-17$
$8-2 x=3 x-17$
$-2 x-3 x=-17-8$
$-x-4=5 x-8$
$-x-5 x=-8+4$
$14-15 t+36=1-20 t-1$
$\frac{-6 x}{-6}=\frac{-4}{-6}$
$x=\frac{2}{3}$
$-15 t+50=-20 t$
$-15 t+20 t=-50$
$\frac{5 t}{5}=\frac{-50}{5}$
$\frac{-5 x}{-5}=\frac{-25}{-5}$
$x=5$
d) $-\frac{1}{2}(6 x-14)-8 x=4-2(x+3)$
$-3 x+7-8 x=4-2 x-6$

$$
-11 x+7=-2 x-2
$$

$-11 x+2 x=-2-7$
$\frac{-9 x}{-9}=\frac{-9}{-9}$

$$
x=1
$$

$$
\text { e) } \begin{aligned}
(2 k-5)(3 k+1) & =3 k(2 k-1) \\
6 k^{2}+2 k-15 k-5 & =6 k^{2}-3 k \\
6 k^{2}-13 k-5 & =6 k^{2}-3 k \\
\underbrace{6 k^{2}-6 k^{2}}_{=0}-13 k+3 k & =5 \\
-\frac{10 k}{-10} & =\frac{5}{-10} \\
k & =-\frac{1}{2}
\end{aligned}
$$

Ex. 2. Solve each equation.

Ex. 3. Use an equation to determine the value of x and state any angle properties used in your solution.

HW: 5.2 Worksheets A and B

Solving Multi-Step Equations Continued

Ex. 1. Solve and formally check the following equation.

$$
\begin{aligned}
-(2 x+1) & =-7-7(x+2) \\
-2 x-1 & =-7-7 x-14 \\
-2 x-1 & =-7 x-21 \\
-2 x+7 x & =-21+1 \\
\frac{5 x}{5} & =-\frac{20}{5} \\
\therefore x & =-4
\end{aligned}
$$

must

$$
\begin{aligned}
& \text { follow } \\
& \text { BEDMAS }
\end{aligned}
$$

order

Check $x=-4$

$$
\begin{array}{rlrl}
L S & =-(2 x+1) \quad R S & =-7-7(x+2) \\
& =-[2(-4)+1] & & =-7-7[(-4)+2] \\
& =-(-8+1) & & =-7-7(-2) \\
& =-(-7) & =7+14 \\
& =7 & \because L S=R S & \\
& \therefore x=-4 & \text { is the } \\
& & \text { solution }
\end{array}
$$

Ex. 2. Write an equation in terms of one variable to model each situation below and solve.
a) Liam sells sandwiches at an arena. He earns $\$ 10.50$ per hour plus $\$ 0.40$ for each sandwich he sells How many sandwiches does he need to sell during a 6 -hour shift to earn $\$ 125$?
Let χ represent how many sandwiches Liam needs to sell during a 6-hour shift to earn $\$ 125$.

$$
\begin{aligned}
& 0.40 x+10.50(6)=125 \\
& 0.4 x+63=125 \\
& 0.4 x=125-63 \\
& \begin{array}{r}
4 \longdiv { 1 5 5 } \\
\frac{620}{-4 \downarrow} \begin{array}{l}
22 \downarrow \\
-\frac{20}{20} \\
-20 \\
0
\end{array}
\end{array} \\
& \frac{0.4 x}{0.4}=\frac{.62}{0.4} \times 10 \\
& x=\frac{620}{4} \\
& x=155 \\
& \therefore \text { Liam needs to sell } \\
& 155 \text { sandwiches } \\
& \text { to earn } \$ 125 \text {. }
\end{aligned}
$$

b) A submarine is currently submerged at a depth of 600 m below sea level. If it rises at a rate of $4 \mathrm{~m} / \mathrm{s}$, how long will it take for the submarine to reach a depth of 486 m below sea level?
Let χ _ represent how long it will take to reach a depth of 486 m below sea level, in seconds.

$$
\begin{aligned}
-600+4 x & =-486 \\
4 x & =-486+600 \\
\frac{4 x}{4} & =\frac{114}{4} \\
x & =28 \frac{2}{4} \\
x & =28 \frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{r}
58910 \\
-486 \\
\hline 114 \\
28 \\
4 \longdiv { 1 1 4 } \\
-84 \\
\hline 34 \\
\hline-32 \\
\hline 2
\end{array}
$$

\qquad represent how long it will take to reach

$$
-600+4 x=-486
$$

\therefore it will take $28 \frac{1}{2}$ seconds to reach 48 m below sea laurel.
c) The perimeter of a rectangle is 58 cm . If the length is 5 cm longer than the width, find the rectangle's dimensions.

Let $\chi \quad$ represent the width of the rectangle in CM
Let $x+5$ represent the length of the rectangle in $c m$.

$$
\begin{aligned}
P & =2 w+2 l \\
58 & =2(x)+2(x+5) \\
58 & =2 x+2 x+10 \\
58 & =4 x+10 \\
-4 x & =10-58 \quad \therefore \text { the rectangle's width is } \\
\frac{-4 x}{-4} & =\frac{-48}{-4}
\end{aligned}
$$

$$
x=12
$$

d) The Sun Spa charges annual dues of $\$ 125$ plus $\$ 10$ per hour to use the facilities. The Moon Spa charges annual dues of $\$ 230$ plus $\$ 7$ per hour to use the facilities. For what number of hours would the two spas charge the same total amount?
Let χ represent the number of hours for which the two spas charge the same total amount.

$$
\begin{aligned}
10 x+125 & =7 x+230 \\
10 x-7 x & =230-125
\end{aligned}
$$

$$
\begin{array}{r}
35 \\
3 \longdiv { 1 0 5 } \\
-9 \downarrow \\
\hline 15 \\
-15 \\
\hline 0
\end{array}
$$

$$
\begin{aligned}
\frac{3 x}{3} & =\frac{105}{3} \\
x & =35
\end{aligned}
$$

e) Simon says: "Five times my age 4 years ago is the same as 3 times my age in 2 years." How old is Simon now?

Let χ represent Simon's age now in years.

$$
\begin{aligned}
5 \times \text { Simon's age }_{4} \text { yrs ago } & =3 \times \text { Simon's age }_{\text {in } 2 \text { yrs }} \\
5(x-4) & =3(x+2) \\
5 x-20 & =3 x+6 \\
5 x-3 x & =6+20 \\
\frac{2 x}{2} & =\frac{26}{2} \\
& \therefore \text { Simon is } \\
& \text { currently } 13 \text { years old. }
\end{aligned}
$$

$$
x=13
$$

5.4 Solving Equations Involving Fractions

Rule:
Clear all fractions by multiplying all terms on both sides of the equation by the lowest common denominator.
Ex. 1. Solve each equation.

$$
\begin{aligned}
\text { a) } \frac{x}{4} & =\frac{-10}{1} \\
\frac{X^{\prime}}{1}\left(\frac{x}{4}\right) & =\frac{4}{1}\left(\frac{-10}{1}\right) \\
x & =-40
\end{aligned}
$$

$$
\text { b) } \frac{x}{10}=\frac{3}{5}
$$

$$
\begin{aligned}
\frac{D^{\prime}}{1}\left(\frac{x}{1 \varnothing}\right) & =\frac{L^{2}}{1}\left(\frac{3}{\Phi}\right) \\
x & =6
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \frac{2 x}{3}+1=-4 \\
& \frac{1}{1 /}\left(\frac{2 x}{33}\right)+\frac{3}{1}\left(\frac{1}{1}\right)\left.=-\frac{3}{1} \frac{(4)}{1}\right) \\
& 2 x+3=-12 \\
& 2 x=-12-3 \\
& \frac{2 x}{2}=-\frac{15}{2} \\
& x=-\frac{15}{2}
\end{aligned}
$$

d) $\frac{4 y}{3}-\frac{1}{2}=4$

$$
\begin{aligned}
\frac{2}{1}\left(\frac{4 y}{23}\right)-\frac{6^{3}}{1}\left(\frac{1}{2}\right) & =\frac{6}{1}\left(\frac{4}{1}\right) \\
8 y-3 & =24 \\
8 y & =24+3 \\
\frac{8 y}{80} & =\frac{27}{8} \\
y & =\frac{27}{8}
\end{aligned}
$$

Ex. 2. Solve and check.

$$
\begin{aligned}
\frac{2 n}{3}-\frac{1}{2} n & =7+\frac{3}{4} n \\
\frac{4}{1}\left(\frac{2 n}{36}\right)-\frac{6}{1}\left(\frac{1}{2} n\right) & =\frac{12}{1}\left(\frac{7}{1}\right)+\frac{3}{1}\left(\frac{3}{4} n\right) \\
8 n-6 n & =84+9 n \\
2 n & =84+9 n \\
2 n-9 n & =84 \\
\frac{-7 n}{-7} & =\frac{84}{-7} \\
n & =-12
\end{aligned}
$$

$$
\begin{aligned}
\text { Check } & =\frac{2 n}{3}-\frac{1}{2} n_{n}^{2} \quad R S=7+\frac{3}{4} n \\
& =\frac{2(-12)}{3}-\frac{1}{2}^{(-12)} \\
& =7+\frac{3}{4}(-12) \\
& =\frac{-24}{3}+\frac{12}{2} \\
& =-8+\frac{36}{4} \\
& =-2
\end{aligned} \quad=-2
$$

5.5 Solving Equations Involving Fractions Continued

Recall:
Clear all fractions by multiplying everything on both sides of the equation by the lowest common denominator.
Ex. 1. Solve each equation.

$$
\text { a) } \begin{aligned}
\frac{3 x}{4}-7 & =2 \frac{1}{2} x \\
\frac{3 x}{4}-7 & =\frac{5}{2} x \\
\frac{4}{1}\left(\frac{3 x}{4}\right)-\frac{4}{1}\left(\frac{7}{1}\right) & =\frac{x^{2}}{1}\left(\frac{5}{7_{1}} x\right) \\
3 x-28 & =10 x \\
3 x-10 x & =28 \\
\frac{-7 x}{-7} & =\frac{28}{-7} \\
x & =-4
\end{aligned}
$$

c) $\frac{x+3}{3}-\frac{2-x}{7}=1$

$$
\begin{aligned}
\frac{7 x}{1}\left(\frac{x+3}{x_{1}}\right)-\frac{3}{1}\left(\frac{2-x}{7}\right) & =\frac{21}{1}\left(\frac{1}{1}\right) \\
7(x+3)-3(2-x) & =21 \\
7 x+21-6+3 x & =21 \\
10 x+15 & =21 \\
10 x & =21-15 \\
\frac{10 x}{10} & =\frac{6}{10} \\
x & =\frac{3}{5}
\end{aligned}
$$

Ex. 2. Solve and check.
b) $\frac{y-5}{4}=\frac{2 y+7}{3}$

$$
\frac{3}{1}\left(\frac{y-5}{17}\right)=\frac{42}{1}\left(\frac{2 y+7}{35}\right)
$$

$$
3(y-5)=4(2 y+7)
$$

$$
3 y-15=8 y+28
$$

$$
\begin{aligned}
3 y-8 y & =28+15 \\
\frac{-5 y}{-5} & =\frac{43}{-5}
\end{aligned}>y=\frac{-43}{5}
$$

d) $\frac{2}{3}(x+2)-\frac{5}{6}(x-2)=3$

$$
\begin{aligned}
\frac{2}{1}\left[\frac{2}{z_{1}}(x+2)\right]-\frac{1}{1}\left[\frac{5}{16}(x-2)\right] & =\frac{6}{1}\left(\frac{3}{1}\right) \\
4(x+2)-5(x-2) & =18 \\
4 x+8-5 x+10 & =18 \\
-x+18 & =18 \\
-x & =18-18 \\
\frac{-x}{-1} & =\frac{0}{-1} \\
x & =0
\end{aligned}
$$

Ex. 3. Given the formula to convert Fahrenheit temperatures to Celsius is $C=\frac{5}{9}(F-32)$, convert:
a) $5^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

Find C if $F=5$

$$
C=\frac{5}{9}[F-32]
$$

$C=\frac{5}{9}[(5)-32]$ evaluate

$$
\begin{aligned}
C & =\frac{5}{9_{1}}\left(\frac{-27}{1}\right) \\
C & =-15 \\
\therefore 5^{\circ} \mathrm{F} & \text { is }-15^{\circ} \mathrm{C}
\end{aligned}
$$

b) $20^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$

Find F if $C=20$

$$
\begin{aligned}
C & =\frac{5}{9}(F-32) \\
20 & =\frac{5}{9}(F-32) \quad \text { solve } \\
\frac{9}{1}\left(\frac{20}{1}\right) & =\frac{1}{1}\left[\frac{5}{r_{1}}(F-32)\right] \\
180 & =5(F-32) \\
180 & =5 F-160 \\
-5 F & =-160-180 \\
\frac{-5 F}{-5} & =\frac{-340}{-5} \\
F & =68 \\
\therefore 20^{\circ} \mathrm{C} & \text { is } 68^{\circ} \mathrm{F}
\end{aligned}
$$

Ex. 4. A square has sides of length $2 k-1$ units. An equilateral triangle has sides of length $\frac{3 k+2}{2}$ units.
The square and the triangle have the same perimeter.
a) Find the value of k.
b) Find the perimeter.

b) Find P if $k=2$

$$
\begin{aligned}
& P=4(2 k-1) \\
& P=4[2(2)-1] \\
& P=4(4-1) \\
& P=4(3) \\
& \therefore P=12 \text { units }
\end{aligned}
$$

a)

$$
\begin{aligned}
2[4(2 k-1)] & =\frac{1}{1}\left[3\left(\frac{3 k+2}{2}\right)\right] \\
8(2 k-1) & =3(3 k+2) \\
16 k-8 & =9 k+6 \\
16 k-9 k & =6+8 \\
\frac{7 k}{7} & =\frac{14}{7} \\
k & =2
\end{aligned}
$$

5.6 Word Problems
(A)
(B)

Ex. 1. One train leaves Boston for Chicago travelling at $80 \mathrm{~km} / \mathrm{h}$ and a second train leaves Chicago for Boston travelling at $60 \mathrm{~km} / \mathrm{h}$. The distance from Boston to Chicago is 1540 km .
a) How many hours after they left each station will the two trains meet?
b) How far will the train bound for Boston have travelled?

distance $=$ speed \times time
a) Let x represent the amount of time, in hours.

$$
\begin{array}{rlr}
80 x+60 x & =1540 \\
\frac{140 x}{140} & =\frac{1540}{140} \\
x & =\frac{154}{14} & \frac{14 \sqrt{154}}{14} \\
x & =11 & \frac{-14}{14}
\end{array}
$$

\therefore they meet after 11 hours of travel
(b) If $x=11: d_{B}=60(11) \quad \therefore$ the train bound for Boston traveled 660 Km .
Ex. 2. One half of a certain even integer plus one fifth of the next consecutive even integer equals 48. Find the two integers.

Let x represent an even integer, and $x+2$ is the next consecutive even integer.

$$
\begin{aligned}
& \frac{1}{2} x+\frac{1}{5}(x+2)=48 \quad \text { or } \frac{x}{2}+\frac{x+2}{5}=48 \\
& \frac{5}{1}\left(\frac{1}{2} x\right)+\frac{20}{1}\left[\frac{1}{5}(x+2)\right]=10(48) \\
& 1 \\
& 5 x+2(x+2)=480 \\
& 5 x+2 x+4=480 \\
& 7 x=480-4 \\
& \frac{7 x}{7}=\frac{476}{7} \\
& x=68
\end{aligned} \quad \rightarrow \begin{aligned}
& \frac{x}{2}
\end{aligned} \quad \text { If } x=68 \text { then }
$$

\therefore the two even integers are 68:70.
HW: 5.6 Worksheets A and B to be completed on lined paper.
Good solutions are required with "let" statements and "concluding" statements.

